Skip to main content

Modeling and Optimization of Heap Bioleach Processes

  • Chapter
Biomining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batty JD, Rorke GV (2005) Development and commercial demonstration of the BioCopâ„¢ thermophile process. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium (IBS 2005), Cape Town, pp 153–162.

    Google Scholar 

  • Bolorunduro SA, Dixon DG (2006) An electrochemical model for the leaching of chalcocite by ferric sulfate. Hydrometallurgy (in press).

    Google Scholar 

  • Bouffard SC, Dixon DG (2002) On the rate-limiting steps of pyritic refractory gold ores heap leaching. Miner Eng 15:859–870.

    Article  CAS  Google Scholar 

  • Bouffard, SC, Rivera-Vasquez BF, Dixon DG (2006) Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media. Hydrometallurgy (in press).

    Google Scholar 

  • Dixon DG (2000) Analysis of heat conservation in copper sulfide heap leaching. Hydrometallurgy 58:27–41.

    Article  CAS  Google Scholar 

  • Dixon DG (2003) Heap leach modeling–the current state of the art. In: Young C, Alfantazi A, Anderson C, James A, Dreisinger DB, Harris B (eds) Hydrometallurgy 2003, proceedings of the 5th international symposium honoring Professor Ian M. Ritchie, vol 1: leaching and solution purification. The Minerals, Metals and Materials Society, Warrendale, pp 289–314.

    Google Scholar 

  • Dixon DG, Hendrix JL (1993) Theoretical basis for variable order assumption in the kinetics of leaching of discrete grains. AIChE J 39:904–907.

    Article  CAS  Google Scholar 

  • Dixon DG, Petersen J (2003) Comprehensive modelling study of chalcocite column and heap bioleaching. In: Riveros PA, Dixon DG, Dreisinger DB, Menacho J (eds) Hydrometallurgy of copper, proceedings of Copper 2003, vol 6. CIM-MetSoc, Montreal, pp 493–516.

    Google Scholar 

  • Dixon DG, Petersen J (2004) Modeling the dynamics of heap bioleaching for process improvement and innovation. In: Hydro-Sulfides 2004, proceedings of the international colloquium on hydrometallurgical processing of copper sulfides, pp 13–45.

    Google Scholar 

  • Dutrizac JE (1989) Elemental sulfur formation during the ferric sulfate leaching of chalcopyrite. Can Metall Q 28:337–344.

    CAS  Google Scholar 

  • Hackl RP, Dreisinger DB, Peters E, King JA (1995) Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 39:25–48.

    Article  CAS  Google Scholar 

  • Hiroyoshi N, Kuroiwa S, Miki H, Tsunekawa M, Hirajima T (2004) Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions. Hydrometallurgy 74:103–116.

    Article  CAS  Google Scholar 

  • Kametami H, Aoki A (1985) Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric acid solution. Metall Trans B 16:695–705.

    Article  Google Scholar 

  • Lizama HM, Harlamovs JR, Belanger S, Brienne SH (2003) The Teck Cominco Hydrozincâ„¢ process. In: Young C, Alfantazi A, Anderson C, James A, Dreisinger DB, Harris B (eds) Hydrometallurgy 2003, proceedings of the 5th international symposium honoring Professor Ian M. Ritchie, vol 2: electrometallurgy and environmental hydrometallurgy. The Minerals, Metals and Materials Society, Warrendale, pp 1503–1516.

    Google Scholar 

  • Ogbonna N, Petersen J, Dixon DG (2005) HeapSim–unravelling the mathematics of heap bioleaching. In: Dry M, Dixon DG (eds) Computational analysis in hydrometallurgy, 35th annual hydrometallurgy meeting. CIM-MetSoc, Montreal, pp 225–240.

    Google Scholar 

  • Petersen J, Dixon DG (2002) Thermophilic heap leaching of a chalcopyrite concentrate. Miner Eng 15:777–785.

    Article  CAS  Google Scholar 

  • Petersen J, Dixon DG (2003) The dynamics of chalcocite heap bioleaching. In: Young C, Alfantazi A, Anderson C, James A, Dreisinger DB, Harris B (eds) Hydrometallurgy 2003, proceedings of the 5th international symposium honoring Professor Ian M. Ritchie, vol 1: leaching and solution purification. The Minerals, Metals and Materials Society, Warrendale, pp 351–364.

    Google Scholar 

  • Petersen J, Dixon DG (2004) Bacterial growth and propagation in chalcocite heap bioleach scenarios. In: Tzesos M, Hatzikioseyan A, Remoundaki E (eds) Biohydrometallurgy–a sustainable technology in evolution, IBS 2003. National Technical University of Athens, pp 65–74.

    Google Scholar 

  • Petersen J, Dixon DG (2005) Competitive bioleaching of pyrite and chalcopyrite. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium (IBS 2005), Cape Town, pp 55–64.

    Google Scholar 

  • Petersen J, Dixon DG (2006) Modelling and optimisation of zinc heap bioleaching. Hydrometallurgy (in press).

    Google Scholar 

  • Roman RJ, Benner BR, Becker GW (1974) Diffusion model for heap leaching and its application to scale-up. Trans SME-AIME 256:247–252.

    CAS  Google Scholar 

  • Stott MB, Watling HR, Franzmann PD, Sutton DC (2000) The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13:1117–1127.

    Article  CAS  Google Scholar 

  • Third KA, Cord-Ruwisch R, Watling HR (2000) The role of iron-oxidising bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy 57:225–233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petersen, J., Dixon, D.G. (2007). Modeling and Optimization of Heap Bioleach Processes. In: Rawlings, D.E., Johnson, D.B. (eds) Biomining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34911-2_8

Download citation

Publish with us

Policies and ethics