Skip to main content

Commercial Applications of Thermophile Bioleaching

  • Chapter
Biomining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonijevi´c MM, Bogdanovi´c GD (2004) Investigation of the leaching of chalcopyrite ore in acidic solutions. Hydrometallurgy 73:245–256.

    Article  Google Scholar 

  • Batty JD, Rorke GV (2005) Development and commercial demonstration of the BioCopTM thermophile process. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, 25–29 September 2005, pp 153–161.

    Google Scholar 

  • Blight KR, Ralph DE (2004) Effect of ionic strength on iron oxidation with batch cultures of chemolithotrophic bacteria. Hydrometallurgy 73:325–334.

    Article  CAS  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604.

    Article  CAS  Google Scholar 

  • Bouffard SC, Dixon DG (2001) Investigative study into the hydrodynamics of heap leaching processes. Metall Trans B 32B:763–776.

    CAS  Google Scholar 

  • Bouffard SC, Dixon DG (2004) Evolution of bacterial community in a pyritic refractory gold ore column leaching environment. Miner Process Extr Metall Rev 25:313–319.

    Article  Google Scholar 

  • Brewer RE (2004) Copper concentrate pressure leaching–plant scale-up from continuous laboratory testing. Miner Metall Process 21:202–208.

    CAS  Google Scholar 

  • Brierley CL (2001) Bacterial succession in bioheap leaching. Hydrometall 59:249–255.

    Article  CAS  Google Scholar 

  • Brierley JA, Brierley CL (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59:233–239.

    Article  CAS  Google Scholar 

  • Carranza F, Iglesias N, Mazuelos A, Palencia I, Romero R (2004) Treatment of copper concentrates containing chalcopyrite and non-ferrous sulfides by the BRISA process. Hydrometallurgy 71:413–420.

    Article  CAS  Google Scholar 

  • Casiot C, Morin G, Juillot F, Bruneel O, Personn J-C, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936.

    Article  CAS  PubMed  Google Scholar 

  • Chong N, Karamanev DG, Margaritis A (2002) Effect of particle–particle shearing on the bioleaching of sulfide minerals. Biotechnol Bioeng 80:349–357.

    Article  CAS  PubMed  Google Scholar 

  • Clark DA, Norris PR (1996) Oxidation of mineral sulfides by thermophilic microorganisms. Miner Eng 9:1119–1125.

    Article  CAS  Google Scholar 

  • Crundwell FK (2001) Modeling, simulation, and optimization of bacterial leaching reactors. Biotechnol Bioeng 71:255–265.

    Article  CAS  Google Scholar 

  • Crundwell FK (2003) How do bacteria interact with minerals? Hydrometallurgy 71:75–81.

    Article  CAS  Google Scholar 

  • d’Hugues P, Foucher S, Gall’-Cavalloni P, Morin D (2002) Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int J Miner Process 66:107–119.

    Article  Google Scholar 

  • de Kock SH, Barnard P, du Plessis CA (2003) Oxygen and carbon dioxide kinetic challenges for thermophilic mineral bioleaching processes. Biochem Soc Trans 32:273–275.

    Article  Google Scholar 

  • Dew DW, Lawson EN, Broadhurst JL (1997) The BIOX® Process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 45–80.

    Google Scholar 

  • Dixon DG (2000) Analysis of heat conservation during copper sulfide heap leaching. Hydrometallurgy 58:27–41.

    Article  CAS  Google Scholar 

  • Dixon S (2004) Definition of economic optimum for the leaching of high acid-consuming copper ores. Miner Metall Process 21:198–201.

    CAS  Google Scholar 

  • Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40.

    CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970.

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Haddad CM, Hawkes RB, Robertson WJ, Plumb JJ (2005) Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation. Min Eng 18:1304–1314.

    Article  CAS  Google Scholar 

  • Gericke M, Muller HH, Neale JW, Norton AE, Crundwell FK (2005) Inoculation of heap-leaching operations. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, 25–29 September 2005, pp 255–264.

    Google Scholar 

  • Gericke M, Pinches A, van Rooyen JV (2001) Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture. Int J Miner Process 62:243–255.

    Article  CAS  Google Scholar 

  • Gómez E, Ballester A, González F, Blázquez ML (1999) Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti. Hydrometallurgy 52:349–366.

    Article  Google Scholar 

  • Gonzalez R, Gentina JC, Acevedo F (2004) Biooxidation of a gold concentrate in a continuous stirred tank reactor: mathematical model and optimal configuration. Biochem Eng J 19:33–42.

    Article  CAS  Google Scholar 

  • Harahuc L, Lizama HM, Suzuki I (2000) Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Appl Environ Microbiol 66:1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Hiroyoshi N, Kuroiwa S, Miki H, Tsunekawa M, Hirajima T (2004) Synergistic effect of cupric and ferrous ions on active-passive behaviour in anodic dissolution of chalcopyrite in sulfuric acid solutions. Hydrometallurgy 74:103–116.

    Article  CAS  Google Scholar 

  • Hyvärinen O, Hämäläinen M (2005) HydroCopper–a new technology producing copper directly from concentrate. Hydrometallurgy 77:61–65.

    Article  Google Scholar 

  • Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–157.

    Article  CAS  Google Scholar 

  • Konishi Y, Tokushige M, Asai S, Suzuki T (2001) Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors. Hydrometallurgy 59:271–282.

    Article  CAS  Google Scholar 

  • Kordosky GA (2002) Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually. S Afr J Min Metall Nov–Dec:445–450.

    Google Scholar 

  • Liu J, Brady BH (1999) Evaluation of one-dimensional in-situ leaching process. Int J Numer Anal Methods Geomech 23:1857–1872.

    Article  Google Scholar 

  • Lizama H (2001) Copper bioleaching behaviour in an aerated heap. Int J Miner Process 62:257–269.

    Article  CAS  Google Scholar 

  • Lu ZY, Jeffrey MI, Lawson F (2000) An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy 56:145–155.

    Article  CAS  Google Scholar 

  • Moskalyk RR, Alfantazi AM (2003) Review of copper pyrometallurgical practice: today and tomorrow. Miner Eng 16:893–919.

    Article  CAS  Google Scholar 

  • Nemati M, Harrison STL, Hansford GS, Webb C (1998) Biological oxidation of ferrous sulfate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem Eng J 1:171–190.

    Article  CAS  Google Scholar 

  • Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76.

    Article  CAS  PubMed  Google Scholar 

  • Norris PR, Owen JP (1993) Mineral sulfide oxidation by enrichment cultures of novel thermoacidophilic bacteria. FEMS Microbiol Rev 11:51–56.

    Article  CAS  Google Scholar 

  • Petersen J, Dixon DG (2002) Thermophilic heap leaching of a chalcopyrite concentrate. Miner Eng 15:777–785.

    Article  CAS  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE, Dew DW, du Plessis CA (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44.

    Article  CAS  PubMed  Google Scholar 

  • Riveros PA, Dutrizac JE, Spencer P (2001) Arsenic disposal practices in the metallurgical industry. Can Metall Q 40:395–420.

    CAS  Google Scholar 

  • Rubio A, Garcia Frutos FJ (2002) Bioleaching capacity of an extremely thermophilic culture for chalcopyritic materials. Miner Eng 15:689–694.

    Article  CAS  Google Scholar 

  • Sampson MI, Van der Merwe JW, Harvey TJ, Bath MD (2005) Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching. Miner Eng 18:427–437.

    Article  CAS  Google Scholar 

  • Sandström A. ShchukarevA, Paul J (2005) XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Miner Eng 18:505–515.

    Article  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321.

    CAS  PubMed  Google Scholar 

  • Shiers DW, Blight KR, Ralph DE (2005) Sodium sulfate and sodium chloride effects on batch culture of iron oxidising bacteria. Hydrometallurgy 80:75–82.

    Article  CAS  Google Scholar 

  • Stott MB, Sutton DC, Watling HR, Franzmann PD (2003) Comparitive leaching of chalcopyrite by selected acidiphilic bacteria and archaea. Geomicrobiol J 20:215–230.

    Article  CAS  Google Scholar 

  • Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19:119–132.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol 65:5163–5168.

    CAS  PubMed  Google Scholar 

  • Third KA, Cord-Ruwisch R, Watling HR (2000) The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy 57:225–233.

    Article  CAS  Google Scholar 

  • Tshilombo AF, Petersen J, Dixon DG (2002) The influence of applied potentials and temperature on the electrochemical response of chalcopyrite during bacterial leaching. Miner Eng 15:809–813.

    Article  CAS  Google Scholar 

  • van Staden PJ, Shaidaee B, Yazdani M (2005) A collaborative plan towards the heap bioleaching of low grade chalcopyritic ore from a new Iranian mine. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, 25–29 September 2005, pp 115–123.

    Google Scholar 

  • Villarroel D (1999) Process for refining copper in solid state. Miner Eng 12:405–414.

    Article  CAS  Google Scholar 

  • Wang S (2005) Copper leaching from chalcopyrite concentrates. J Met 57:48–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plessis, C.A.d., Batty, J.D., Dew, D.W. (2007). Commercial Applications of Thermophile Bioleaching. In: Rawlings, D.E., Johnson, D.B. (eds) Biomining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34911-2_3

Download citation

Publish with us

Policies and ethics