Skip to main content

Acidophile Diversity in Mineral Sulfide Oxidation

  • Chapter
Biomining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152.

    Article  CAS  PubMed  Google Scholar 

  • Barr DW, Ingledew WJ, Norris PR (1990) Respiratory components of iron-oxidizing, acidophilic bacteria. FEMS Microbiol Lett 70:85–90.

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Joulian C, Garrido F, Dictor M-C, Morin D, Coupland K, Johnson DB, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and charcaterization of Thiomonas arsenovorans sp. nov. Antonie van Leeuwenhoek (in press).

    Google Scholar 

  • Batty JD, Rorke GV (2005) Development and commercial demonstration of the BioCOPTM thermophile process. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, pp 153–161.

    Google Scholar 

  • Blake RC, Shute EA, Waskovsky J, Harrison AP (1992) Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiology J 10:173–192.

    Article  CAS  Google Scholar 

  • Brierley JA (1978) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525.

    CAS  PubMed  Google Scholar 

  • Brierley JA (2003) Response of microbial systems to thermal stress in biooxidation-heap pre-treatment of refractory gold ores. Hydrometallurgy 71:13–19.

    Article  CAS  Google Scholar 

  • Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320.

    Article  CAS  PubMed  Google Scholar 

  • Clark DA (1995) The study of acidophilic, moderately thermophilic iron-oxidizing bacteria. PhD thesis, University of Warwick.

    Google Scholar 

  • Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov. sp. nov.: mixed culture ferrous iron oxidation with Sulfobacillus species. Microbiology 141:785–790.

    Article  Google Scholar 

  • Cleaver A (2000) Mineral sulphide oxidation, mixed cultures in bioreactors. PhD thesis, University of Warwick.

    Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates in South African commercial biooxidation tanks that operate at 40?C. Appl Environ Microbiol 68:838–845.

    Article  CAS  PubMed  Google Scholar 

  • Crane AG, Holden PJ (1999) Leaching of harbour sediments by estuarine iron-oxidising bacteria. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, part A. Elsevier, Amsterdam, pp 347–356.

    Google Scholar 

  • Crundwell FK (1988) The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21:155–190.

    Article  CAS  Google Scholar 

  • Demergasso CS, Galleguillos P. PA, Escudero G. LV, Zepeda A. VJ, Castillo D, Casamayor EO (2005) Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–253.

    Article  CAS  Google Scholar 

  • Dew DW, Lawson EN, Broadhurst JL (1997) The BIOX process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 45–80.

    Google Scholar 

  • Dew DW, van Buuren C, McEwan K, Bowker C (1999) Bioleaching of base metal sulphide concentrates: a comparison of mesophile and thermophile bacterial cultures. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, part A. Elsevier, Amsterdam, pp 229–238.

    Google Scholar 

  • d’Hugues P, Foucher S, Gallé-Cavalloni, Morin D (2002) Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int J Miner Process 66:107–119.

    Article  Google Scholar 

  • d’Hugues P, Battaglia-Brunet F, Clarens M, Morin D (2003) Microbial diversity of various metal-sulphides bioleaching cultures grown under different operating conditions using 16S-rDNA analysis. In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution, part II. National Technical University of Athens, pp 1313–1323.

    Google Scholar 

  • Dopson M, Lindström EB (2004) Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb Ecol 48:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088.

    Article  CAS  PubMed  Google Scholar 

  • Eccleston M, Kelly DP, Wood AP (1985) Autotrophic growth and iron oxidation and inhibition kinetics of Leptospirillum ferrooxidans. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology, Van Norstrand Reinhold, New York, pp 263–272.

    Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799.

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Haddad CM, Hawkes RB, Robertson WJ, Plumb JJ (2005) Effects of temperature on the rates of iron and sulfur oxidation by selected Bacteria and Archaea: application of the Ratkowsky equation. Miner Eng 18:1304–1314.

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (1999) Bioleaching of copper sulphide concentrate using extremely thermophilic bacteria. Miner Eng 12:893–904.

    Article  CAS  Google Scholar 

  • Goebel BM, Norris PR, Burton NP (2000) Acidophiles in biomining. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Kluwer, Dordrecht, pp 293–314.

    Google Scholar 

  • Golovacheva RS, Karavaiko GI (1979) A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Microbiology 48:658–665.

    Google Scholar 

  • Golovacheva RS, Golyshina OV, Karavaiko GI, Dorofeev AG, Pivovarova TA, Chernykh NA (1993) A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans sp. nov. Microbiology 61:744–750.

    Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288.

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham W-R, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov. sp. nov, an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006.

    CAS  PubMed  Google Scholar 

  • Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84.

    Article  CAS  PubMed  Google Scholar 

  • Hallberg KB, Johnson DB (2003) Novel acidophiles isolated from moderately acidophilic mine drainage waters. Hydrometallurgy 71:139–148.

    Article  CAS  Google Scholar 

  • Hansford GS (1997) Recent developments in modeling and the kinetics of bioleaching. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 153–175.

    Google Scholar 

  • Harrison AP Jr, Norris PR (1985) Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol Lett 30:99–102.

    Article  CAS  Google Scholar 

  • Hawkes RB, Franzmann PD, Plumb JJ (2005) Moderate thermophiles including ‘Ferroplasma cyprexacervatum’ sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, pp 657–666.

    Google Scholar 

  • Helle U, Onken U (1988) Continuous microbial leaching of a pyritic concentrate by Leptospirillum-like bacteria. Appl Microbiol Biotechnol 28:553–558.

    Article  CAS  Google Scholar 

  • Holden PJ, Foster LJ, Neilan BA, Berra G, Vu QM (2001) Characterisation of novel salt tolerant iron-oxidising bacteria. In: Ciminelli VST, Garcia O Jr (eds) Biohydrometallurgy: fundamentals, technology and sustainable development, part A. Elsevier, Amsterdam, pp 283–290.

    Google Scholar 

  • Huber H, Stetter KO (1989) Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 151:479–485.

    Article  CAS  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Rev 27:307–317.

    CAS  Google Scholar 

  • Johnson DB, Roberto FF (1997) Heterotrophic acidophiles and their roles in bioleaching of sulfide minerals. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 259–279.

    Google Scholar 

  • Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic considerations. Arch Microbiol 180:60–68.

    Article  CAS  PubMed  Google Scholar 

  • Kamimura K, Kunomuraugio K, Sugio T (1999) Isolation and characterization of a marine iron-oxidizing bacterium requiring NaCl for growth. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, oart A, Elsevier, Amsterdam, pp 741–746.

    Google Scholar 

  • Karavaiko GI, Tourova TP, Kondrat’eva TF, Lysenko AM, Kolganova TV, Ageeva SN, Muntyan LN, Pivovarova TA (2003) Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53:113–119.

    Article  CAS  PubMed  Google Scholar 

  • Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM (2005) Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55:941–947.

    Article  CAS  PubMed  Google Scholar 

  • Karsten C, Harneit K, Sand W, Stackebrandt E, Schumann P (2005) Characterization of novel iron-oxidizing bacteria. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, pp 729–735.

    Google Scholar 

  • Kelly DP, Jones CA (1978) Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic, New York, pp 19–44.

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516.

    PubMed  Google Scholar 

  • Kelly DP, Norris PR, Brierley CL (1979) Microbiological methods for the extraction and recovery of metals. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: current state, future prospects. Society for General Microbiology symposium 29. Cambridge University Press, Cambridge, pp 263–307.

    Google Scholar 

  • Klauber C (2003) Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface. Surf Interface Anal 35:415–428.

    Article  CAS  Google Scholar 

  • Kupka D, Kupsáková I (1999) Iron (II) oxidation kinetics in Thiobacillus ferrooxidans in the presence of heavy metals. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, part A. Elsevier, Amsterdam, pp 387–396.

    Google Scholar 

  • Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace N (1992) Evolutionary relationships among the sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278.

    CAS  PubMed  Google Scholar 

  • Leduc LG, Ferroni GD (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14:103–120.

    Article  CAS  Google Scholar 

  • Markosyan GE (1972) A new acidophilic iron bacterium, Leptospirillum ferrooxidans. Biol Zh Arm 25:26.

    Google Scholar 

  • Meruane G, Salhe C, Wiertz J, Vargas T (2002) Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol Bioeng 80:280–288.

    Article  CAS  PubMed  Google Scholar 

  • Meruane G, Cárcamo C, Vargas T (2004) Kinetics of ferrous iron oxidation with Sulfolobus metallicus at 70?C. In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution, part I. National Technical University of Athens, pp 277–283.

    Google Scholar 

  • Nemati M, Harrison STL, Hansford GS, Webb C (1998) Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem Eng J 1:171–190.

    Article  CAS  Google Scholar 

  • Norris PR (1983) Iron and mineral oxidation studies with Leptospirillum-like bacteria. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, pp 83–96.

    Google Scholar 

  • Norris PR (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 3–27.

    Google Scholar 

  • Norris PR (1992) Thermophilic archaebacteria: potential applications. In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Biochemical Society symposium 58. Portland, London, pp 171–180.

    Google Scholar 

  • Norris PR (1997) Thermophiles in bioleaching. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 247–258.

    Google Scholar 

  • Norris PR, Johnson DB (1998) Acidophilic microorganisms. In: Horikoshi K, Grant WD (eds) Extremophiles: life in extreme environments. Wiley, New York, pp 133–154.

    Google Scholar 

  • Norris PR, Kelly DP (1982) The use of mixed microbial cultures in metal recovery. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic, London, pp 443–474.

    Google Scholar 

  • Norris PR, Owen JP (1993) Mineral sulphide oxidation by enrichment cultures of novel thermoacidophilic bacteria. FEMS Microbiol Rev 11:51–56.

    Article  CAS  Google Scholar 

  • Norris PR, Simmons S (2004) Pyrite oxidation by halotolerant, acidophilic bacteria. In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution, part II. National Technical University of Athens, pp 1347–1351.

    Google Scholar 

  • Norris PR, Barr DW, Hinson D (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Science and Technology Letters, Kew, pp 43–59.

    Google Scholar 

  • Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76.

    Article  CAS  PubMed  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943.

    Article  CAS  PubMed  Google Scholar 

  • Parker A, Klauber C, Kougianos A, Watling HR, van Bronswijk (2003) An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy 71:265–276.

    Article  CAS  Google Scholar 

  • Plumb JJ, Gibbs B, Stott MB, Robertson WJ, Gibson JAE, Nichols PD, Watling HR, Franzmann PD (2002) Enrichment and characterisation of thermophilic acidophiles for the bioleaching of mineral sulphides. Miner Eng 15:787–794.

    Article  CAS  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Microbiol 56:65–91.

    Article  CAS  Google Scholar 

  • Rawlings DE, Kusano T (2001) Molecular genetics of Thiobacillus ferrooxidans. Microbiol Rev 58:39–55.

    Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13.

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio) chemistry of bacterial leaching–direct vs. indirect bioleaching. Hydrometallurgy 59:159–175.

    Article  CAS  Google Scholar 

  • Sandström Å, Shchukarev A, Paul J (2005) XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Miner Eng 18:505–515.

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321.

    CAS  PubMed  Google Scholar 

  • Shima S, Suzuki K-I (1993) Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring sulfur for growth. Int J Syst Bacteriol 43:703–708.

    Article  Google Scholar 

  • Simmons S, Norris PR (2002) Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 6:201–207.

    Article  CAS  PubMed  Google Scholar 

  • Tributsch H, Bennett, JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. 1. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31:565–577.

    Article  CAS  Google Scholar 

  • Tributsch H, Rojas-Chapana JA (2000) Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity. Electrochimica Acta 45:4705–4716.

    Article  CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z Allg Mikrobiol 12:311–346.

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. Nov. from an acidophilic microbial community. Appl Environ Microbiol 71: 6319–6324.

    Article  CAS  PubMed  Google Scholar 

  • Vásquez M, Moore ERB, Espejo RT (1999) Detection by polymerase chain reaction-amplification and sequencing of an archaeon in a commercial-scale copper bioleaching plant. FEMS Microbiol Lett 173:183–187.

    Article  Google Scholar 

  • Yahya A, Roberto FF, Johnson DB (1999) Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, part A. Elsevier, Amsterdam, pp 729–739.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Norris, P.R. (2007). Acidophile Diversity in Mineral Sulfide Oxidation. In: Rawlings, D.E., Johnson, D.B. (eds) Biomining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34911-2_10

Download citation

Publish with us

Policies and ethics