Skip to main content

Bioremediation of Soils Polluted with Hexavalent Chromium using Bacteria: A Challenge

  • Chapter
Environmental Bioremediation Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arias YM, Tebo BM (2003) Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl Environ Microbiol 69:1847–1853

    Article  Google Scholar 

  • Arslan P, Beltrame M, Tomasi A (1987) Intracellular chromium reduction. Biochim Biophys Acta 931:10–15

    Article  Google Scholar 

  • Badar U, Ahmed N, Beswick AJ, Pattanapipitpaisal P, Macaskie LE (2000) Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol Lett 22:829–836

    Article  Google Scholar 

  • Bartlett RJ James B (1979) Behavior of chromium in soils: III. Oxidation. J Environ Qual 8:31–34

    Google Scholar 

  • Benedetti A (1998) Defining soil quality: introduction to round table. In: de Bertoldi S, Pinzari F (eds) COST Actions 831, Joint WCs Meeting. Biotechnology of soil: monitoring conservation and remediation, pp 29–33

    Google Scholar 

  • Blowes D (2002) Environmental chemistry. Tracking hexavalent Cr in groundwater. Science 295:2024–2025

    Google Scholar 

  • Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Google Scholar 

  • Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–194

    Article  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  Google Scholar 

  • Cervantes C, Silver S (1992) Plasmid chromate resistance and chromate reduction. Plasmid 27:65–71

    Article  Google Scholar 

  • Chen JH, Hao OJ (1998) Microbial chromium (VI) reduction. Cri Rev Environ Sci Tech 28:219–251

    Article  Google Scholar 

  • Daulton TL, Little BJ, Lowe K, Jones-Meehan J (2002) Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J Microbiol Methods 50:39–54

    Article  Google Scholar 

  • DeFilippi LJ, Lupton FS (1992) Bioremediation of soluble Cr(VI) using sulphate reducing bacteria. In: Allied Signal Research. National Conference on the Control of Hazardous Materials, San Francisco, CA, pp 138–141

    Google Scholar 

  • Deflora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds-a review. Mutat Res 238:99–172

    Google Scholar 

  • Fendorf S, Wielinga BW, Hansel CM (2000) Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int Geol Rev 42:691–701

    Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  Google Scholar 

  • Fendorf SE, Li GC (1996) Kinetics of chromate reduction by ferrous iron. Environ Sci Technol 30:1614–1617

    Article  Google Scholar 

  • Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and-reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843

    Article  Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    Article  Google Scholar 

  • Ganguli A, Tripathi AK (1999) Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett Appl Microbiol 28:76–80

    Article  Google Scholar 

  • Ganguli A., Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  Google Scholar 

  • Gonzalez CF, Ackerley DF, Park CH, Matin A (2003) A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida. Acta Biotechnol 23:233–239

    Article  Google Scholar 

  • Higgins TE, Halloran AR, Dobbins ME, Pittignano AJ (1998) In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue. J Air Waste Manage 48:1100–1106

    Google Scholar 

  • Higgins TE, Halloran AR, Petura JC (1997) Traditional and innovative treatment methods for Cr(VI) in soil. J Soil Contam 6:767–797

    Google Scholar 

  • James BR (2002) Chemical transformations of chromium in soils: relevance to mobility, bio-availability and remediation. In: The chromium file, International Chromium Development Association, Paris, pp 1–8

    Google Scholar 

  • James BR, Bartlett RJ (1983) Behaviour of chromium in soils: VI. interactions between oxidation-reduction and organic complexation. J Environ Qual 12:173–176

    Google Scholar 

  • James BR, Petura JC, Vitale RJ, Mussoline GR (1997) Oxidation-reduction chemistry of chromium: relevance to the regulation and remediation of chromatecontaminated soils. J Soil Contam 6:569–580

    Google Scholar 

  • Juhnke S, Peitzsch N, Hübener N, Große C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH3 4. Arch Microbiol 179:15–25

    Article  Google Scholar 

  • Kadiiska MB, Xiang QH, Mason RP (1994) In vivo free radical generation by chromium(VI): an electron spin resonance spin-trapping investigation. Chem Res Toxicol 7:800–805

    Article  Google Scholar 

  • Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromiummicroorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164

    Article  Google Scholar 

  • Kanojia RK, Junaid M, Murthy RC (1998) Embryo and fetotoxicity of hexavalent chromium: a long-term study. Toxicol Lett 95:165–172

    Article  Google Scholar 

  • Komori K, Wang PC, Toda K, Ohtake H (1989) Factor affecting chromate reduction in Enterobacter cloacae strain HO1. Appl Microbiol Biotechnol 31:567–570

    Article  Google Scholar 

  • Konovalova VV, Dmytrenko GM, Nigmatullin RR, Bryk MT, Gvozdyak PI (2003) Chromium(VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme Microb Tech 33:899–907

    Article  Google Scholar 

  • Liu KJ, Jiang J, Shi X, Gabrys H, Walczak T, Swartz HM (1995) Low-frequency EPR study of chromium (V) formation from chromium (VI) in living plants. Biochem Biophys Res Commun 206:829–834

    Article  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994a) Bioremediation of chromatecontaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150

    Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT Jr (1994b) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:91–131

    Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290

    Article  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • Marsh TL, Leon NM, McInerney MJ (2000) Physiochemical factors affecting chromate reduction by aquifer materials. Geomicrobiol J 17:291–303

    Article  Google Scholar 

  • Matin A, Little CD, Fraley CD, Keyhan M (1995) Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene-and phenoltransforming activity in recombinant Escherichia coli. Appl Environ Microbiol 61:3323–3328

    Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  Google Scholar 

  • McLean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of chromiumreducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 2:611–619

    Article  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases. Appl Microbiol Biotechnol 55:95–100

    Google Scholar 

  • Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–636

    Article  Google Scholar 

  • Mordenti A, Piva G (1997) Chromium in animal nutrition and possible effects on human health. In: Canali S, Tittarelli F, Sequi P (eds) Chromium environmental issues, Franco Angeli s.r.l., Milan, pp 131–151

    Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106

    Article  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159

    Article  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux system involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  Google Scholar 

  • Ohta N, Galsworthy PR, Pardee AB (1971) Genetics of sulfate transport by Salmonella typhimurium. J Bacteriol 105:1053–1062

    Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  Google Scholar 

  • Pettine M, Barra I, Campanella L, Millero FJ (1998) Effect of metals on the reduction of chromium (VI) with hydrogen sulfide. Water Research 32:2807–2813

    Article  Google Scholar 

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex. Biochem Biophys Res Commun 294:76–81

    Article  Google Scholar 

  • Reddy KR, Chinthamreddy S, Saichek RE, Cutright TJ (2003) Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics. Energy Sources 25:931–943

    Article  Google Scholar 

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium-a review. Wat Res 25:807–816

    Article  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  Google Scholar 

  • Rock ML, James BR, Helz GR (2001) Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ Sci Technol 35:4054–4059

    Article  Google Scholar 

  • Ross DS, Sjogren RE, Bartlett RJ (1981) Behavior of chromium in soils: IV. toxicity to microorganisms. J Environ Qual 2:145–168

    Google Scholar 

  • Roundhill DM, Koch HF (2002) Methods and techniques for the selective extraction and recovery of oxoanions. Chem Soc Rev 31:60–67

    Article  Google Scholar 

  • Salunkhe PB, Dhakephalkar PK, Paknikar KM (1998) Bioremediation of hexavalent chromium in soil microcosms. Biotechnol Lett 20:749–751

    Article  Google Scholar 

  • Sani RK, Peyton BM, Smith WA, Apel WA, Petersen JN (2002) Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl Microbiol Biotechnol 60:192–199

    Article  Google Scholar 

  • Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53:348–351

    Article  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    Google Scholar 

  • Shen H, Wang Y-T (1995) Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl Environ Microbiol 61:2754–2758

    Google Scholar 

  • Shi W, Bischoff M, Turco R, Konopka A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl Soil Ecol 21:169–177

    Article  Google Scholar 

  • Smith WL (2001) Hexavalent chromium reduction and precipitation by sulphatereducing bacterial biofilms. Environ Geochem Hlth 23:297–300

    Article  Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1995) A simple kinetic approach to derive the ecological dose value, Ed(50), for the assessment of Cr(VI) toxicity to soil biological properties. Soil Biol Biochem 27:801–810

    Article  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    Google Scholar 

  • Tebo BM, Obraztova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198

    Article  Google Scholar 

  • Tokunaga TK, Wan J, Firestone MK, Hazen TC, Olson KR, Herman DJ, Sutton SR, Lanzirotti A (2003) In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. J Environ Qual 32:1641–1649

    Google Scholar 

  • Tseng JK Bielefeldt AR (2002) Low-temperature chromium(VI) biotransformation in soil with varying electron acceptors. J Environ Qual31:1831–1841

    Google Scholar 

  • Turick CE, Camp CE, Apel WA (1997) Reduction of Cr(6(+)) to Cr(3(+)) in a packedbed bioreactor. Appl Biochem Biotech 63:871–877

    Google Scholar 

  • Turick CE, Apel WA (1997) A bioprocessing strategy that allows for the selection of Cr(VI)-reducing bacteria from soils. J Ind Microbiol Biotechnol 18:247–250

    Article  Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-, chromium-and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  Google Scholar 

  • Viamajala S, Peyton BM, Sani RK, Apel WA, Petersen JN (2004) Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol Prog 20:87–95

    Article  Google Scholar 

  • Viti C, Giovannetti L (2001) The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms. Ann Microbiol 51:201–213

    Google Scholar 

  • Viti C, Giovannetti L (2005) Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using biolog and ARDRA approaches. App Soil Ecol (in press).

    Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  Google Scholar 

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527

    Article  Google Scholar 

  • Wong PTS, Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO, Nieboer E (eds) Chromium in natural and Human Environments, Wiley, New York, pp 305–315

    Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Viti, C., Giovannetti, L. (2007). Bioremediation of Soils Polluted with Hexavalent Chromium using Bacteria: A Challenge. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_3

Download citation

Publish with us

Policies and ethics