Fine Sediment Particles

  • Ole Larsen
  • William Davison
  • Kyriakos Vamvakopoulos
  • Flemming Møhlenberg
Part of the Environmental Science and Engineering book series (ESE)


Many of the sediments in our coastal environments are contaminated with various metals. The highes Iconcenlralionsofconlaminanls are found in harb ours, where anlifouling painls and industrial activities are the main sources. In the past years there has been a strong focus on TBT that is known to be highly toxic and to affect the hormonal balance of many animals. Almost all substitutes for TBT are based on Cu-complexes. Copper is known to form strong complexes with natural organic matter and the total Cu-concentration in sediments is found to correlate with the concentration of organic matter (see Fig. 8.1).


Erosion Rate Sediment Transport Suspended Particulate Matter Fine Sediment Critical Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BLMP (2002) Meeresumwelt 1997–1998. Bundesamt für Seeschifffahrt und Hydrographie (BSH), Hamburg und RostockGoogle Scholar
  2. Burnton ED, Phillips IR, Hawker DW (2005) Geochemical partitioning of copper, lead, and zinc in benthic, estuarine sediment profiles. J Environ Qual 34:263–273CrossRefGoogle Scholar
  3. Canadian Council of Ministers of the Environment (CCME) (1999) Canadian Environmental Quality Guidelines, WinnipegGoogle Scholar
  4. Chapman PM (1990) The Sediment Quality Triad approach to determining pollution-induced degradation. Sci Tot Environ 97/98:815–825CrossRefGoogle Scholar
  5. Chapman PM, Wang F, Janssen C, Persoone G, Allen HE (1998) Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55:2221–2243CrossRefGoogle Scholar
  6. Comber SDW, Gardner MJ, Boxall ABA (2002) Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries. J Environ Monit 4:417–425CrossRefGoogle Scholar
  7. Fenchel T, Glud RN (1998) Chemolithotrophic veil architectures enhance fluxes at the marine benthic interface. Nature 394:367–369CrossRefGoogle Scholar
  8. Fones GR, Davison W, Grime GW (1998) Development of constrained DET for measurements of dissolved iron in surface sediments at sub-mm resolution. Sci Tot Environ 221:127–137CrossRefGoogle Scholar
  9. Glud RN, Ramsing NB, Gundersen JK, Klimant I (1996) Planar optrodes, a new tool for fine scale measurements of two dimensional O2 distribution in benthic communities. Mar Ecol Prog Ser 140:217–226CrossRefGoogle Scholar
  10. Lenihan HS, Peterson CH, Kim SL, Conlan KE, Fairey R, McDonald C, Grabowski JH, Oliver JS (2003) Variation in marine benthic community composition allows discrimination of multiple Stressors. Mar Ecol Prog Ser 261:63–73CrossRefGoogle Scholar
  11. Long ER, Field LJ, MacDonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17:714–727CrossRefGoogle Scholar
  12. M0hlenberg F, Josefson AB, Vale C (2007) Marine benthic macrofauna–Linkages between chemical and biological quality of surface waters. Deliverable 16 of REBECCA project (SSPI-CT-2003-502158)Google Scholar
  13. Parkman RH, Charnock JM, Bryan ND, Livens FR, Vaughan DJ (1999) Reactions of copper and cadmium ions in aqueous solution with goethite, lepidocrocite, mackinawite, and pyrite. Amer Min 84:407–419Google Scholar
  14. Serbst JR, Burgess RM, Kuhn A, Edwards PA, Cantwell M G, Pelletier MC, Berry W J (2003) Precision of dialysis (peeper) sampling of cadmium in marine sediment interstitial water. Arch Environ Contam Toxicol 45:297–305CrossRefGoogle Scholar
  15. Shuttleworth SM, Davison W, Hamilton-Taylor J (1999) Two dimensional and fine structure in the concentrations of iron and manganese in sediment pore-waters. Envi Sci Technol 33:4169–4175CrossRefGoogle Scholar
  16. Sochaczewski L, Stockdale A, Zhang H, Tych W, Davison W (2007) A three dimensional model of transport and reaction dynamics in sediments: 3D-TREAD, in prepGoogle Scholar
  17. Tankere-Muller S, Zhang H, Davison W, Finke N, Larsen O, Stahl H, Glud RN (2007) Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment. Mar Chem, in pressGoogle Scholar


  1. Amos CL, Daborn GR, Christian HA, Atkinson A, Robertson A (1992) In-situ erosion measurements on fine-grained sediments from the Bay of Fundy. Mar Geol 108:175–196CrossRefGoogle Scholar
  2. Amos CL, Feeney T, Sutherland TF, Luternauer JL (1997) The stability of fine-grained sediments from the Fraser River delta. Estuar Coastal Shelf Sci 45:507–524CrossRefGoogle Scholar
  3. Bobertz B, Kuhrts C, Harff J, Fennel W, Seifert T, Bohling B (2005) Sediment properties in the Western Baltic Sea for the use in sediment transport modelling. Journal of Coastal Research 21(3):588–597CrossRefGoogle Scholar
  4. Bohling B (2003) Untersuchungen zur Mobilität natürlicher und anthropogener Sedimente in der Mecklenburger Bucht, Ph.D.-thesis, Mathematisch-Naturwissenschaftliche Fakultät, Universität GreifswaldGoogle Scholar
  5. Bohling B (2005) Estimating the risk for erosion of surface sediments in the Mecklenburg Bight (south-western Baltic Sea). Baltica 18(1):3–12Google Scholar
  6. Dyer KR (1986) Coastal and estuarine sediment dynamics. Wiley, ChichesterGoogle Scholar
  7. Feng H, Cochran JK, Hirschberg DJ (1999) 234Th and 7Be as tracers for the transport and dynamics of suspended particles in a partially mixed estuary. Geochim Cosmochim Acta 63:2487–2505CrossRefGoogle Scholar
  8. Fitzgerald SA, Klump JV, Swarzenski PW, MacKenzie RA, Richards KD (2001) Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River, Wisconsin. Environ Sci Technol 35:300–306CrossRefGoogle Scholar
  9. Gellermann R, Weiss D, Brügmann L (1990) Datierung von Ostseesedimenten mit 210Pb. Isotopenpraxis 26:375–380Google Scholar
  10. Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment function of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 149–174Google Scholar
  11. Kersten M, Thomsen S, Priebsch W, Garbe-Schönberg CD (1998) Scavenging and particle residence times determined from 234Th/238U disequilibria in the coastal waters of Mecklenburg Bay. Appl Geochem 13:339–347CrossRefGoogle Scholar
  12. Kersten M, Leipe T, Tauber F (2005) Storm disturbance of sediment contaminants at a hot-spot in the Baltic Sea assessed by 234Th radionuclide profiles. Environ Sci Technol 39:984–990CrossRefGoogle Scholar
  13. Kuhrts C, Fennel W, Seifert T (2004) Model studies of transport of sedimentary material in the western Baltic. J Mar Systems 52:167–190CrossRefGoogle Scholar
  14. Lau Y L, Droppo IG (2000) Influence of antecedent conditions on critical shear stress of bed sediments. Water-Research 34(2):663–667CrossRefGoogle Scholar
  15. Leipe T, Kersten M, Heise S, Pohl Ch, Witt G, Liehr G, Zettler M, Tauber F (2005) Ecotoxicity assessment of natural attenuation effects at a historical dumping site in the western Baltic Sea. Mar Pollut Bull 50:446–459CrossRefGoogle Scholar
  16. Lick W, Lick J, Jin L, Gailani J (2006) Approximate equations for sediment erosion rates. In: Maa J, Sanford L, Schoellhamer D (eds) Estuarine and coastal fine sediment dynamics. Elsevier (Proc. Marine Sci. 8), New York, pp 106–124Google Scholar
  17. McNeil J, Taylor C, Lick W (1997) Measurements of erosion of undisturbed bottom sediments with depth. ASCE J Hydr Engrg122:316–324CrossRefGoogle Scholar
  18. Mehta AJ, Hayter EJ, Parker WR, Krone RB, Teeter AM (1989) Cohesive sediment transport. J Hydr Engrg 115:504–519Google Scholar
  19. Nelson J, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resour Res 31:2071–2086CrossRefGoogle Scholar
  20. Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coastal Engineering 29(l–2):1–25CrossRefGoogle Scholar
  21. Puls W, Sündermann J (1990) Simulation of suspended sediment dispersion in the North Sea. In: Cheng RT (ed) Residual currents and long-term transport. Coastal and Estuarine Studies 38, Springer-Verlag, New York, pp 356–372Google Scholar
  22. Radakovitch O, Frignani M, Giuliani S, Montanari R (2003) Temporal variations of dissolved and particulate 234Th at a coastal station of the northern Adriatic Sea. Estuar Coast Shelf Sci 58:813–824CrossRefGoogle Scholar
  23. Rutgers van der Loeff MM, Boudreau BP (1997) The effect of resuspension on chemical exchanges at the sediment-water interface in the deep sea–A modelling and natural radiotracer approach. J Mar Syst 11:305–342CrossRefGoogle Scholar
  24. Sanford LP, Maa JPY (2001) A unified erosion formulation for fine sediments. Mar Geol 179:9–23CrossRefGoogle Scholar
  25. Seifert T, Kayser B (1995) A high resolution spherical grid topography of the Baltic Sea. Meereswissenschaftliche Berichte–Marine science reports Nr. 9, Institut für Ostseeforschung Warnemünde, pp 72–88Google Scholar
  26. Thorn MFC, Parsons JG (1980) Erosion of cohesive sediments in estuaries: An engineering guide. Proceedings of the International Symposium on Dredging Technology, Bordeaux. International Association of Dredging Companies, Bedford, pp 349–358Google Scholar
  27. Whitehouse R, Soulsby R, Roberts W, Mitchener H (2000) Dynamics of estuarine muds: A manual for practical applications. London, Thomas Telford PublicationsGoogle Scholar
  28. Witt O, Westrich B (2003) Quantification of erosion rates for undisturbed contaminated cohesive sediment cores by image analysis. Hydrobiologia 494:271–276CrossRefGoogle Scholar
  29. Ziervogel K, Bohling B (2003)Sedimentological parameters and erosion behaviour of submarine coastal sediments in the south-western Baltic Sea. Geo-Mar Lett 23(l):43–52CrossRefGoogle Scholar
  30. Ziervogel K, Forster S (2006) Do benthic diatoms influence erosion thresholds of coastal subtidal sediments? J Sea Res 55:43–53CrossRefGoogle Scholar


  1. Adams EE, Stolzenbach KD, Lee JJ, Caroli J, Funk D (1998) Deposition of contaminated sediments in Boston Harbor studied using fluorescent dye and particle tracers. Est Coast Shelf Sci 46:371–382CrossRefGoogle Scholar
  2. Balouin Y, Howa H, Pedreros R, Michel D (2005) Longshore sediment movements from tracers and models, Praia de Faro, South Portugal. J Coast Res 21:146–156CrossRefGoogle Scholar
  3. Courtois G, Monaco A (1969) Radioactive Methods for the Quantitative Determination of Coastal Drift Rate. Marine Geology 7:183–206CrossRefGoogle Scholar
  4. Cromey CJ, Nickell TD, Black KD, Provost PG, Griffiths CR (2002) Validation of a fish farm waste resuspension model by use of a particulate tracer discharged from a point source in a coastal environment. Estuaries 25:916–929Google Scholar
  5. Fennessy MJ, Dyer KR, Huntley DA, Bale AJ (1997) Estimation of settling flux spectra in estuaries using INSSEV. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments–Proc. of INTERCOH Conf. (Wallingford, England), Chichester: John Wiley & Son, pp 87–104Google Scholar
  6. Heathershaw AD, Carr AP (1978) Measurement of sediment transport rates using radioactive tracers. In: Coastal Sediments’ 77 (ASCE Symposium, Charleston, South Carolina 1977) New York: American Society of Civil Engineers, pp 399–416Google Scholar
  7. Kachanoski RG, Carter MR (1999) Landscape position and soil redistribution under three soil types and land use practices in Prince Edward Island. Soil Till Res 51:211–217CrossRefGoogle Scholar
  8. Krezoski JR (1985) Particle reworking in Lake Michigan sediments: In-situ tracer measurements using a rare earth element. 28th Conference of Great Lakes Research, International Association of Great Lakes Research, Milwaukee, WIGoogle Scholar
  9. Mahler BJ, Bennett PC, Hillis DM, Winkler M (1998a) DNA-labeled clay: A sensitive new method for tracing particle transport. Geology 26:831–834CrossRefGoogle Scholar
  10. Mahler BJ, Bennett PC, Zimmerman M (1998b) Lanthanide-labelled clay: A new method for tracing sediment transport in Karst. Ground Water 36:835–843CrossRefGoogle Scholar
  11. Manning AJ (2004) Observations of the properties of flocculated cohesive sediment in three western European estuaries. J Coastal Res SI 41:70–81Google Scholar
  12. Manning AJ, Benson T, Spencer KL, Suzuki K, Taylor JA, Dearnaley M (in prep) Preliminary laboratory tests of the flocculation properties exhibited by a holmium-labelled montmorillonite cohesive sediment tracerGoogle Scholar
  13. Manning AJ, Friend PL, Prowse N, Amos CL (in press) Preliminary Findings from a Study of Medway Estuary (UK) Natural Mud Floc Properties Using a Laboratory Mini-flume and the LabSFLOC system. Cont. Shelf Res BIOFLOW SIGoogle Scholar
  14. Matisoff G, Ketterer ME, Wilaon CG, Layman R, Whiting PJ (2001) Transport of Rare Earth Element tagged soil particles in response to thunderstorm runoff. Env Sci Tech 35:3356–3362CrossRefGoogle Scholar
  15. McLaren P, Bowles D (1985) The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology 55:457–470Google Scholar
  16. McComb P, Black K (2005) Detailed observations of littoral transport using artificial sediment tracer, in a high-energy, rocky reef and iron sand environment. J of Coast Res 21:358–373CrossRefGoogle Scholar
  17. Mehta AJ, Lott JW (1987) Sorting of fine sediment during deposition. Proc. Speciality Conf. Advances in Understanding Coastal Sediment Processes. Am Soc Civ Eng, New York, pp 348–362Google Scholar
  18. Michel D, Howa HL (1999) Short-term morphodynamic response of a ridge and runnel system on a mesotidal sandy beach. J of Coast Res 15:428–437Google Scholar
  19. Miller SE, Heath GR, Gonzalez RD (1982) Effects of Temperature on the Sorption of Lanthanides by Montmorillonite. Clays and Clay Minerals 30:111–122CrossRefGoogle Scholar
  20. Newmann KA, Morel FMM, Stolzenbach KD (1990) Settling and coagulation characteristics of fluorescent particles determined by flow-cytometry and fluorometry. Env Sci Tech 24:506–513CrossRefGoogle Scholar
  21. Quine TA, Govers G, Poesen J, Walling D, van Wesemael B (1999) Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: an investigation using caesium-134. Soil Till Res 51:279–301CrossRefGoogle Scholar
  22. Spencer KL, James SL, Taylor JA, Kearton-Gee T (2007) Sorption of La3+ onto clay minerals: A potential tracer for fine sediment transport in the coastal marine environment? Special Publication of the BGS vol. SP274Google Scholar
  23. Suzuki K, Spencer KL (in review) Optimisation of lanthanum (La3+) Sorption for development of fine sediment tracers: a preliminary study. Submitted to Chemical GeologyGoogle Scholar
  24. Suzuki K, Spencer KL, Hillier S (in prep) Potassium leaching of clay minerals and its effect on samarium and lanthanum sorptionGoogle Scholar
  25. Voulgaris G, Simmonds D, Michel D, Howa H, Collins MB, Huntley DA (1998) Measuring and modelling sediment transport on a macrotidal ridge and runnel beach: An intercomparison. Journal Of Coastal Research 14:315–330Google Scholar
  26. Yin Y, Chang N, Zhong W, Sun S, Zhang Y, Cui H, Chen S, Feng Y, Sun L (1993) A study of neutron activation tracer sediment technique. Science in China, Series A, 36:243–248Google Scholar
  27. Weltje L, Heidenreich H, Zhu W, Wolterbeek H, Korhammer S, de Goeij JJM, Markert B (2002) Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands. Science of the Total Environment 286:191–214CrossRefGoogle Scholar
  28. Zhang XC, Nearing MA, Polyakov VO, Friedrich JM (2003) Using rare-earth oxide tracers for studying soil erosion dynamics. Soil Science Society of America 67:279–288CrossRefGoogle Scholar


  1. Ackermann F, Bergmann H, Schleichert U (1983) Monitoring of heavy metals in coastal and estuarine sediments–a question of grain-size: <20 μm versus <60 μm. Environmental Technology Letters 4:317–328CrossRefGoogle Scholar
  2. Baborowski M, Kraft J, Mages M, Karrasch B, von Tümpling W, Ovari M, Zaray G, Einax JW (2002) Untersuchungen zum Eintrag von gelösten und partikulären Stoffen aus der Szamos in die Tisza (Ungarn). In: Tagungsbericht 2001, Band II, Deutsche Gesellschaft für Limnologie (DGL) Tagungsberichte der DGL, Deutsche Gesellschaft für Limnologie, Tutzing, pp 879–884Google Scholar
  3. Baborowski M, Kraft J, van der Veen A, von Tümpling W, Einax JW (2006) Transport von Spurenmetallen aus der Szamos in die Theiß (Ungarn). In: Jahrestagung der Wasserchemischen Gesellschaft 2006 in Celle, 22.-24.05.2006:159–163Google Scholar
  4. Bachmann T, Friese K, Zachmann DW (2001) Redox and pH conditions in the water column and in the Sediments of an acidic mining lake. J Geochem Exploration 73:75–86CrossRefGoogle Scholar
  5. Black MC, William PL (2001) Preliminary assessment of metal toxicty in the middle Tisza River (Hungary) flood plain. JSS 4:203–206Google Scholar
  6. Förstner U, Heise S, Schwartz R, Westrich BJ, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe River catchment area. JSS 4:247–260Google Scholar
  7. Kraft C (2002) Auswirkungen von Schwermetallemissionen nach Unfällen im rumänischen Bergbau auf das Sediment der Flüsse Szamos und Theiß. (M.S. Thesis), Inst. f. Geowissenschaften, BraunschweigGoogle Scholar
  8. Kraft C, von Tümpling W, Zachmann DW (2003) Auswirkungen von Schwermetallemissionen nach Unfällen im rumänischen Bergbau auf das Sediment der Flüsse Szamos und Theiß (Ungarn). Zbl Geol Paläont, Teil I:153–169Google Scholar
  9. Kraft C, von Tümpling jr. W, Zachmann DW (2006) The effects of mining in Northern Romania on the heavy metal distribution in sediments of the rivers Szamos and Tisza (Hungary). Acta Hydrochim Hydrobiol 34:257–264CrossRefGoogle Scholar
  10. Lewin J, Macklin MG (1987) Metal mining and floodplain sedimentation in Britain. In: Gardiner V (ed) International Geomorphology 1986: Proceedings of the First International Conference on Geomorphology, John Wiley & Sons, Chichester, pp 1009–1027Google Scholar
  11. Osán J, Kurunczi S, Török S, Van Grieken R (2002) X-Ray analysis of riverbank sediment of the Tisza (Hungary): Identification of particles from a mine pollution event.-Spectrochimica Acta Part B: Atomic Spectroscopy 57:413–422CrossRefGoogle Scholar
  12. Ovari M, Mages M, Woelfl S, von Tuempling W, Kröpfl K, Záray G (2004) Total reflection X-ray fluorescence spectrometric determination of element inlets from mining activities at the upper Tisza catchment area, Hungary. Spectrochimica Acta Part B 59:1173–1181CrossRefGoogle Scholar
  13. Soldán P, Pavonic M, Boucek J, Kokes J (2001) Baia Mare accident–Brief ecotoxicological report of Czech experts. Ecotoxicology and Environmental Safety 49:255–261CrossRefGoogle Scholar
  14. Woelfl S, Mages M, Ovari M, Geller W (2004) Determination of heavy metals in macrozoobenthos (chironomid larvae) from the river Tisza by total reflection X-ray fluorescence spectrometry. In: Cser MA, Lászlo IS, Étienne J-C, Maymard Y, Centeno JA, Khassanova L, Collery P (eds) Metal Ions in Biology and Medicine, vol. 8. J. Libbey Eurotext, Montrouge, pp 330–333Google Scholar
  15. WHO Regional Office for Europe (2002) Floods–Climate change and adaptation strategies for human health. WHO-meeting in London, 30 June-2 July 2002, EUR/02/5036813. Copenhagen, DenmarkGoogle Scholar
  16. WWF (2002) The ecological effects of mining spills in the Tisza River system in 2000. WWF, ViennaGoogle Scholar
  17. Zinke A (2005) Mining risk spot is safe again. Danube Watch 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ole Larsen
    • 2
    • 3
  • William Davison
    • 1
  • Kyriakos Vamvakopoulos
    • 3
  • Flemming Møhlenberg
    • 4
  1. 1.Department of Environmental ScienceLancaster UniversityUK
  2. 2.DHI Wasser und Umwelt GmbHSykeGermany
  3. 3.Department of BiogeochemistryMax Planck Institute for Marine MicrobiologyBremenGermany
  4. 4.DHI Water & EnvironmentHørsholmDenmark

Personalised recommendations