Transport Indicators

  • Wolfhard Symader
  • Reinhard Bierl
  • Andreas Kurtenbach
  • Andreas Krein
Part of the Environmental Science and Engineering book series (ESE)


The understanding of the transport of cohesive sediments in flowing waters is one of the major tasks in fluvial hydrology. The bulk of material is transported during events as suspended particulate matter, but a continuous exchange with the river bottom and its interaction with the transport mechanisms of coarse material make it difficult to distinguish between different processes. From the water chemistry point of view highest concentrations of dissolved solids normally occur under dry weather flow conditions, when the concentrations of suspended particulate matter are lowest and the river bottom is supposed to behave as a sink. What is insignificant for the transport of most of the material can be crucial for understanding the fluxes between water body, suspended particles and river bottom.


Suspended Particulate Matter Suspended Matter Spring Flood Flood Wave Elbe Estuary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown AG (1985) The potential use of pollen in the identification of suspended sediment sources. Earth Surface Processes and Landforms 10:27–32CrossRefGoogle Scholar
  2. Bierl R, Symader W, Gasparini F, Hampe K, Udelhoven T (1996) Particle associated contaminants in flowing waters–the role of sources. Arch Hydrobiol Spec Issues Adv Limnol 47:229–234Google Scholar
  3. Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer-Verlag, BerlinGoogle Scholar
  4. Gallé T, Van Lagen B, Kurtenbach A, Bierl R (2004) An FTIR-DRIFT study on river sediment particle structure: Implications for biofilm dynamics and pollutant binding. Environ Sci Technol 38:4496–4502CrossRefGoogle Scholar
  5. Gilvear DJ, Petts GE (1985) Turbidity and suspended solids variations downstream of a regulating reservoir. Earth Surface Processes and Landforms 10:363–373CrossRefGoogle Scholar
  6. Grimshaw DL, Lewin J (1980) Source identification for suspended sediments. J Hydrol 47:151–162CrossRefGoogle Scholar
  7. Horowitz AJ (1991) A primer on sediment-trace element chemistry. Lewis Publ, ChelseaGoogle Scholar
  8. Howard AD (1992) Modeling channel migration and floodplain sedimentation in meandering streams. In: Carling PA, Petts GE (eds): Lowland floodplain rivers. Wiley, New York, pp 1–42Google Scholar
  9. Imeson AC, Vis M, Duysings JJ (1984) Surface and subsurface sources of suspended solids in forested drainage basins in the Keuper region of Luxembourg. In: Burt TP, Walling DE (eds) Catchment experiments in fluvial geomorphology. Geo Books, Norwich UK, pp 219–233Google Scholar
  10. Knox J (1989) Long-and short-term episodic storage and removal of sediment in watersheds of southwestern Wisconsin and northwestern Illinois. IAHS Publ 184:157–164Google Scholar
  11. Koll K, Dittrich A (1998) Sediment transport and erosion in mountain streams. IAHS Publ 249:309–316Google Scholar
  12. Kurtenbach A, Krein A, Symader W (2005) The significance of channel flow processes for the coupling of runoff generation with dissolved and particulate transport–an analysis based on artificial flood waves in two mesoscale middle mountain catchments. Hydrologie und Wasserbewirtschaftung 49(4):172–181, (in German)Google Scholar
  13. Matson E, Hornor SG, Buck JD (1978) Pollution indicators and other microorganisms in river sediment. J Water Pollut Control Fed 50:13–20Google Scholar
  14. Müller G, Förstner U (1968) Sedimenttransport im Mündungsgebiet des Alpenrheins. Geol Rundschau 58:229–259CrossRefGoogle Scholar
  15. Nanson GN, Croke JC (2002) Emerging issues in floodplain research. IAHS Publ 276:271–278Google Scholar
  16. Olley JM, Murray AS (1994) Origins of variability in the 230Th/232Th ratio in sediments. IAHS Publ 224:65–70Google Scholar
  17. Peart MR (1989) Methodologies currently available for the determination of suspended sediment source: a critical review. Proc 4th Int Symp River Sedimentation, Beijing, pp 150–157Google Scholar
  18. Schorer M (1998) Raumzeitliche Dynamik von anorganischen und organischen Schadstoffen in Sedimenten eines Fliessgewässers. Dissertation Universität TrierGoogle Scholar
  19. Strunk N (1993) Schwebstoffcharakteristika und Hochwasserdynamik–Eine Untersuchung zur Identifikation und Aktivierung partikulärer Stoffquellen. Dissertation Universität TrierGoogle Scholar
  20. Symader W, Bierl R (2000) Time series analysis of chemistry in bottom sediments of the Kartelbornsbach, Germany. IAHS Publ 263:175–181Google Scholar
  21. Symader W, Schorer M, Bierl R (1997) Space-time pattern of organic contaminants in river bottom sediments. IAHS Publ 243:37–44Google Scholar
  22. Thorns MC, Foster JM, Gawne B (2000) Flood-plain sedimentation in a dryland river: the river Murray, Australia. IAHS Publ 263:227–236Google Scholar
  23. Udelhoven T, Nagel A, Gasparini F (1997) Sediment and suspended particle interactions during low water flow in a small heterogeneous catchment. Catena 30:135–147CrossRefGoogle Scholar
  24. Walling DE (1996) Suspended sediment transport by rivers: a geomorphological and hydrological perspective. Arch Hydrobiol Spec Issues Adv Limnol 47:1–27Google Scholar
  25. Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Tot Envion 344:159–184Google Scholar
  26. Walling DE, Quine TA, He Q (1992) Investigating contemporary rates of floodplain sedimentation. In: Carling PA, Petts GE (eds) Lowland floodplain rivers. Wiley, New York, pp 165–184Google Scholar


  1. Aharonson EF, Karasikov N, Roitberg M, Shamir J (1986) GALAI CIS-1, a novel approach to aerosol particle size analysis. J Aerosol Sci 17:530–536CrossRefGoogle Scholar
  2. Bierl R, Symader W, Gasparini F, Hampe K, Udelhoven T (1996) Particle associated contaminants in flowing waters–the role of sources. Arch Hydrobiol Spec Issues Advanc Limnol 47:229–234Google Scholar
  3. Blake WH, Walsh RPD, Barnsley MJ, Palmer G, Dyrynda P, James JG (2003) Heavy metal concentrations during storm events in a rehabilitated industrialized catchment. Hydrological Processes 17:1923–1939CrossRefGoogle Scholar
  4. Broekhuizen N, Parkyn S, Miller D (2001) Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457:125–132CrossRefGoogle Scholar
  5. Brown JN, Peake BM (2006) Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Science of the Total Environment 359:145–155CrossRefGoogle Scholar
  6. Evans KM, Gill RA, Robotham PWJ (1990) The source, composition, and flux of polycyclic aromatic hydrcarbons in sediments of the river Derwent, Derbeyshire, U.K. Water, Air and Soil Pollution 51:1–12CrossRefGoogle Scholar
  7. Ellis JB, Revitt DM (1982) Incidence of heavy metals in street surface sediments: solubility and grain size studies. Water, Air and Soil Pollution 17:87–100Google Scholar
  8. Gallé T, Van Lagen B, Kurtenbach A, Bierl R (2004) An FTIR-DRIFT Study on River Sediment Particle Structure: Implications for Biofilm Dynamics and Pollutant Binding. Environ Sci Technol 38(17):4496–4502CrossRefGoogle Scholar
  9. Greig SM, Sear DA, Carling PA (2005) The impact of fine sediment accumulation on the survival of incubating salmon progeny: Implications for sediment management. Science of the Total Environment 344:241–258CrossRefGoogle Scholar
  10. Hewitt CN, Rashed MB (1992) Removal rates of selected pollutants in the runoff waters from a major rural highway. Water Research 26(3):311–319CrossRefGoogle Scholar
  11. Hillenbrand T, Toussaint D, Böhm E, Fuchs S, Scherer U, Rudolphi A, Hoffmann M, Kreißig J, Kotz C (2005) Einträge von Kupfer, Zink und Blei in Gewässer und Böden–Analyse der Emissionspfade und möglicher Emissionsminderungsmaßnahmen. Umweltbundesamt Texte 19/05, DessauGoogle Scholar
  12. Krein A, Schorer M (2000) Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments. Water Research 34:4110–4115CrossRefGoogle Scholar
  13. Krein (2000) Stofftransportbezogene Varianzen zwischen Hochwasserwellen in kleinen Einzugsgebieten unter Berücksichtigung partikelgebundener toxischer Umweltchemikalien. Ph.D. Thesis, University of Trier, AachenGoogle Scholar
  14. Kurtenbach A, Krein A, Symader W (2005) The significance of channel flow processes for the coupling of runoff generation with dissolved and particulate transport–an analysis based on artificial flood waves in two meso-scale middle mountain catchments (in German). Hydrologie und Wasserbewirtschaftung 49(4):172–181Google Scholar
  15. Lee JH, Bang KW, Ketchum LH, Choe JS, Yu MJ (2002) First flush analysis of urban storm runoff. Science of the Total Environment 293:163–175CrossRefGoogle Scholar
  16. Schorer M, Eisele M (1997) Accumulation of inorganic and organic pollutants by biofilms in the aquatic environment. Water, Air and Soil Pollution 99:651–659Google Scholar
  17. Walling DE (1996) Suspended sediment transport by rivers: a geomorphological and hydrological perspective. Arch Hydrobiol Spec Issues Advanc Limnol 47:1–27Google Scholar
  18. Yu KC, Tsai LJ, Chen, SH, Ho ST (2001) Correlation analyses on binding behaviour of heavy metals with sediment matrices. Water Research 35(10):2417–2428CrossRefGoogle Scholar


  1. Anonymous (1997) Deutsches Gewässerkundliches Jahrbuch — Elbegebiet, Teil I. Landesamt für Umweltschutz Sachsen-Anhalt (Hrsg), Halle (Saale)Google Scholar
  2. Anonymous (1998) Deutsches Gewässerkundliches Jahrbuch — Elbegebiet, Teil I. Landesamt für Umweltschutz Sachsen-Anhalt (Hrsg), Halle (Saale)Google Scholar
  3. Baborowski M, Claus E, Friese K, Pelzer J, von der Kammer F, Kasimir P, Heininger P (2005) Comparison of different monitoring programs of the 2002 summer flood in the river Elbe. Acta Hydrochim Hydrobiol 22:404–417CrossRefGoogle Scholar
  4. Baborowski M, von Tümpling W, Friese K (2004) Behaviour of suspended particulate matter (SPM) and selected trace metals during the 2002 summer flood in the river Elbe (Germany). Hydrol Earth Syst Sc 8:135–150CrossRefGoogle Scholar
  5. Büttner O, Otte-Witte K, Krüger F, Meon G, Rode M (2006) Numerical modelling of floodplain hydraulics and suspended sediment transport and deposition at the event scale in the middle river Elbe, Germany. Acta hydrochim hydrobiol 34: in pressGoogle Scholar
  6. Calmano W, von der Kammer F, Schwartz R (2005) Characterization of redox conditions in soils and sediments: heavy metals. In: Lens P, Grotenhuis T, Malina G, Tabak H (eds) Soil and Sediment Remediation, IWA Publishing, London, pp 102–120Google Scholar
  7. Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical Contaminated Sediments and Soils at the River Basin Scale–Examples from the Elbe River Catchment Area. Journal of Soils and Sediments 4:247–260CrossRefGoogle Scholar
  8. Friese K, Witter B, Brack W, Büttner O, Krüger F, Kunert M, Rupp H, Miehlich G, Gröngröft A, Schwartz R, van der Veen A, Zachmann DR (2000) Distribution and fate of organic and inorganic contaminants in a river floodplain–results of a case study on the river Elbe, Germany. In: Wise DL, Trantolo D, Cichon EJ, Inyang HI, Stottmeister U (eds) Remediation Engineering of Contaminated Soils. Marcel Dekker, New York, Basel, pp 375–428Google Scholar
  9. Gröngröft A, Schwartz R, Miehlich G (2000) Wirkung eines Winterhochwassers auf Grundwasserstand, Luftgehalt und Redoxspannung eines eingedeichten Auenbodens. In: Bundesamt für Naturschutz (ed) Renaturierung von Bächen, Flüssen und Strömen. Angewandte Landschaftsökologie 37:277–282Google Scholar
  10. Gröngröft A, Krüger F, Grunewald K, Meißner R, Miehlich G (2005) Plant and soil contamination with trace metals in the Elbe floodplains: A case study after the flood in August 2002. Acta Hydrochim Hydrobiol 33:466–474CrossRefGoogle Scholar
  11. Krüger F, Büttner O, Friese K, Meißner R, Rupp H, Schwartz R (1997) Lokalisation der Schwermetallbelastung durch Simulation des überflutungsregimes. DBG-Mitteilungen 85:949–952Google Scholar
  12. Krüger F, Prange A, Janzten E, Trejtnar K, Miehlich G (1998) Geogene Hintergrundwerte. Wasserwirt Wassertechnik 7:16–19Google Scholar
  13. Krüger F, Prange A, Jantzen E (1999) Ermittlung geogener Hintergrundwerte an der Mittelelbe und deren Anwendung in der Beurteilung von Unterwassersedimenten. In: Gröngröft A, Schwartz R (Hrsg) Eigenschaften und Funktionen von Auenböden an der Elbe. Hamburger Bodenkundliche Arbeiten 44:39–51Google Scholar
  14. Krüger F, Schwartz R, Stachel B (2003) Quecksilbergehalte in Sedimenten und Aueböden der Elbe und deren Beurteilung unter besonderer Berücksichtigung des Sommerhochwassers 2002. Vom Wasser 101:213–218Google Scholar
  15. Krüger F, Meißner R, Gröngröft A, Grunewald K (2005) Flood induced heavy metal and arsenic contamination of Elbe River floodplain soils. Acta hydrochim hydrobiol 33:455–465CrossRefGoogle Scholar
  16. Meißner R, Guhr H, Rupp H, Seeger J, Spott D (1994) Schwermetallbelastung von Böden und Eibsedimenten in ausgewählten Gebieten Ostdeutschlands. Z f Kulturtechnik und Landentwicklung 35:1–9Google Scholar
  17. Miehlich G (1983) Schwermetallanreicherung in Böden und Pflanzen der Pevestorfer Elbaue. Abh naturwiss Verein Hamburg 25:75–89Google Scholar
  18. Schwartz R, Duwe J, Gröngröft A (1997) Einsatz von Kunstrasenmatten als Sedimentfallen zur Bestimmung des partikulären Stoffeintrags in Auen und Marschen. DBG-Mitteilungen 85:353–356Google Scholar
  19. Schwartz R, Nebelsiek A, Gröngröft A (1999) Das Nähr-und Schadstoffdargebot der Elbe im Wasserkörper sowie in den frischen schwebstoffbürtigen Sedimenten am Messort Schnackenburg in den Jahren 1984–1997. Hamburger Bodenkundliche Arbeiten 44:65–83Google Scholar
  20. Schwartz R, Gröngröft A, Miehlich G (2000) Charakterisierung typischer Böden im Überschwemmungsbereich der unteren Mittelelbe und Ergebnisse zu deren Wasserhaushalt. In: Friese K, Witter B, Miehlich G, Rode M (Hrsg) Stoffhaushalt von Auenökosystemen, Springer-Verlag, Berlin, pp 65–78Google Scholar
  21. Wilken RD, Simon M, Guhr H (1994) Die Elbe: zur früheren, heutigen und zukünftigen Belastungssituation. In: Wagner R (Hrsg) Wasserkalender 1995–Jahrbuch für das gesamte Wasserfach, Erich Schmidt Verlag, Berlin, pp 3–96Google Scholar
  22. Witter B, Francke W, Franke S, Knauth H-D, Miehlich G (1998) Distribution and mobility of organic micropollutants in river Elbe floodplains. Chemosphere 37:63–78CrossRefGoogle Scholar
  23. Witter B, Winkler M, Friese K (2003) Depth distribution of chlorinated and polycyclic aromatic hydrocarbons in floodplain soils of the river Elbe. Acta Hydrochim Hydrobiol 31:411–422CrossRefGoogle Scholar


  1. Ackermann F, Bergmann H, Schleichert U (1983) Monitoring of heavy metals in coastal and estuarine sediments–a question of grain-size: <20 μm versus <60 μm. Environ Technol Letts 4:317–328Google Scholar
  2. Ackermann F (1998) Dynamik der Schwermetallbelastung in feinkörnigen Sedimenten und Schweb-stoffen im Tidebereich von Ems, Weser und Elbe. BfG-1188, Bundesanstalt für Gewässerkunde, KoblenzGoogle Scholar
  3. Ackermann F, Schubert B (1998) Zur Problematik der Bestimmung von Frachten partikulär gebundener Schadstoffe in die Nordsee. Poster 8th Magdeburger Gewässerschutzseminar, 20-23.10.1998, Karlsbad/ Czech RepublicGoogle Scholar
  4. ARGE Elbe (Arbeitsgemeinschaft für die Reinhaltung der Elbe) (1980) Schwermetalldaten der Elbe. Bericht über die Ergebnisse der Schwermetalluntersuchungen im Eibabschnitt von Schnackenburg bis zur Nordsee 1979/1980Google Scholar
  5. Banat K, Förstner U, Müller G (1972) Schwermetalle in Sedimenten von Donau, Rhein, Ems, Weser und Elbe im Bereich der Bundesrepublik Deutschland. Naturwiss 59:525–528CrossRefGoogle Scholar
  6. Coakley JP, Long BFN (1990) Tracing the Movement of Fine-Grained Sediment in Aquatic Systems. A Literature Review. National Water Research Institute Canada, Centre for Inland Waters, Burlington, Ontario. Scientific Series no. 174Google Scholar
  7. Dyer KR (ed) (1979) Estuarine hydrography and sedimentation. Cambridge University Press. CambridgeGoogle Scholar
  8. Dyer KR (1986) Coastal and estuarine sediment dynamics. Wiley, ChichesterGoogle Scholar
  9. Dyer KR, Robinson M-C, Huntley DA (2001) Suspended sediment transport in the Humber Estuary. In: Land-ocean interaction–measuring and modelling fluxes from river basins to coastal seas. IWA Publishing, London, pp 169–183Google Scholar
  10. Förstner U, Schoer J, Knauth H-D (1990) Metal pollution in the tidal Elbe River. In: Allen RJ, Campbell PGC, Förstner U, Lum K (eds) Fate and effects of toxic chemicals in large rivers and their estuaries. Sci Total Environ 97/98:347–368Google Scholar
  11. Grabemann I, Kappenberg J, Krause G (1995) Aperiodic variations of the turbidity maxima oft two German coastal plain estuaries. Netherlands J Aquat Ecol 29:217–225CrossRefGoogle Scholar
  12. Huntley DA, Leeks GJL, Walling DE (eds) (2001) Land-ocean interaction–Measuring and modelling fluxes from the river basin do the coastal seas. IWA Publishing, LondonGoogle Scholar
  13. Jay DA, Geyer WR, Uncles RJ, Vallino J, Largier J, Boynton WR (1997) A review of recent developments in estuarine scalar flux estimation. Estuaries 20:262–280CrossRefGoogle Scholar
  14. Kappenberg J, Schymura G, Kühn H, Fanger H-U (1996) Spring-neap variations of suspended sediment concentration and transport in the turbidity maximum of the Elbe Estuary. In: Kausch H, Michaelis W (eds) Suspended particulate matter in rivers and estuaries. Arch Hydrobiol Spec Issues Adv Limnol 47:323–332Google Scholar
  15. Kappenberg J, Grabemann I (2001) Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser Estuaries. Estuaries 24:699–706CrossRefGoogle Scholar
  16. Koopmann C, Faller J,V Bernem K-H, Prange A, Müller A (1993) Schadstoffkartierung in Sedimenten des deutschen Wattenmeeres, June 1989-June 1992, UBA-R&D-Project 10903377, GKSS 94/E/6Google Scholar
  17. Knauth H-D, Gandraß J, Sturm R (1993) Vorkommen und Verhalten organischer und anorganischer Mikroverunreinigungen in der mittleren und unteren Elbe. German Federal Ministry of Environment, Nature Conservation and Reactor Safety, Research Report 10204363, Erich Schmidt Verlag BerlinGoogle Scholar
  18. Meade RH (1969) Landward transport of bottom sediments in estuaries of the Atlantic coastal plain. J Sediment Petrol 39:222–234Google Scholar
  19. Meade RH (1972) Transport and deposition of sediments in estuaries. In: Nelson BW (ed) Environmental framework of coastal plain estuaries. Geol Soc Amer, Memoir 133:91–120Google Scholar
  20. Müller G, Förstner U (1975) Heavy metals in sediments of the Rhine and Elbe Estuaries: mobilization or mixing effect. Environ Geol 1:33–39CrossRefGoogle Scholar
  21. Olley JM, Caitcheon GG, Hancock G, Wallbrink PJ (2001) Tracing and Dating Techniques for Sediment and Associated Substances–A Consultancy Report for the Sydney Catchment Authority OSPAR (2002) JAMP Guidelines for monitoring contaminants in sediments. Technical Annex 5–Normalisation of contaminant concentrations; Ref no. 2002-16Google Scholar
  22. OSPAR (2002) JAMP Guidelines for monitoring contaminants in sediments. Technical Annex 5–Normalisation of contaminant concentrations; Ref no. 2002-16Google Scholar
  23. Perillo GME (ed) (1995) Geomorphology and sedimentology of estuaries. Developments in Sedimentology 53, Elsevier, AmsterdamGoogle Scholar
  24. Postma H (1955) Die Entstehung der Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhältnisse in der Unterelbe. Dtsche Hydrograph Zeitschr 8:138–144Google Scholar
  25. Postma H (1967) Sediment transport and sedimentation in the marine environment. In: Lauff GH (ed) Estuaries AAAS Publication 83, Washington DC, pp 158–179Google Scholar
  26. Prange A (1997) Erfassung und Beurteilung der Belastung der Elbe mit Schadstoffen. Teilprojekt 2: Schwermetalle–Schwermetallspezies. Zusammenfassende Ausund Bewertung der Längsprofiluntersuchungen in der Elbe. BMBF-Forschungsvorhaben: 02-WT 9355/4, GKSS-Forschungszentrum Geesthacht GmbH, GeesthachtGoogle Scholar
  27. Rolinski S (1999) On the dynamics of suspended matter transport in the tidal river Elbe: Description and results of a Lagrangian model. J Geophys Res 104C11, 26.043–26.057CrossRefGoogle Scholar
  28. Salomons W, Eysink WD (1981) Pathways of mud and particulate trace metals from rivers to the southern North Sea. In: Nio SD, Schüttenhelm RTE, van Weering TCE (eds) Holocene marine sedimentation in the North Sea basin. Blackwell, Oxford, pp 429–450Google Scholar
  29. Salomons W, Schwedhelm E, Schoer J, Knauth JH (1988) Natural tracers to determine the origin of sediments and suspended matter from the Elbe Estuary. Wat Sci Tech 20:89–102Google Scholar
  30. Schubel JR (1984) Estuarine circulation and sedimentation: an overview. In: Hag BU, Milliman JD (eds) Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold Co.Inc, New York, pp 114–136Google Scholar
  31. Wiltshire KH, Geissler C-D, Schroeder F, Knauth H-D (1996) Pigments in suspended matter from the Elbe Estuary and the German Bight: their use as marker compounds for the characterisation of suspended matter and in the interpretation of heavy metal loadings. In: Kausch H, Michaelis W (eds) Suspended particulate matter in rivers and estuaries. Arch Hydrobiol Spec Issues Adv Limnol 47:53–63Google Scholar
  32. Zwolsman G (1999) Geochemistry of trace metals in the Scheldt Estuary. Geologica Ultraiectina, Mededelingen vande Faculteit Aardwetenschappen Universiteit Utrecht no. 171Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Wolfhard Symader
    • 1
  • Reinhard Bierl
    • 1
  • Andreas Kurtenbach
    • 1
  • Andreas Krein
    • 2
  1. 1.Fachbereich VI Geographie/Geowissenschaften, Abteilung HydrologieUniversität Trier — Campus IITrierGermany
  2. 2.Department of Environment and Agro-BiotechnologiesPublic Research Centre Gabriel Lippmann, Research Unit GeosciencesBelvauxLuxembourg

Personalised recommendations