Sediment-Water Interactions

  • Ellen L. Petticrew
  • Jennifer L. McConnachie
Part of the Environmental Science and Engineering book series (ESE)


The settling and storage of fine-grained sediments in the interstices of fluvial gravel beds can have significant implications on both sediment conveyance in catchments and aquatic habitat quality. Given that suspended fine-grained sediment (<263 μm) moves not only as individual particles, but also as particle aggregates or flocs, there has been a relatively recent research emphasis on characterizing these structures and the conditions which enhance their growth and settling in freshwater aquatic environments (Kranck et al. 1993; Droppo and Ongley 1994; Petticrew 1996; Liss et al. 1996; de Boer 1997; Phillips and Walling 1999).


Suspended Sediment Extracellular Polymeric Substance Suspended Particulate Matter Dissolve Organic Carbon Concentration Suspended Particulate Matter Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan JD (1995) Stream ecology: structure and function of running waters. Chapman and Hall, LondonGoogle Scholar
  2. Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20:41–82CrossRefGoogle Scholar
  3. Ben-David M, Hanley TA, Schell DM (1998) Fertilization of terrestrial vegetation by spawning Pacific salmon: the role of flooding and predator activity. Oikos 83:47–55CrossRefGoogle Scholar
  4. Bilby RE, Fransen BR, Bisson PA (1996) Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: evidence from stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 53:164–173CrossRefGoogle Scholar
  5. Bouillon S, Mohan PC, Sreenivas N, Dehairs F (2000) Sources of suspended organic matter and selective feeding by Zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series 208:79–92CrossRefGoogle Scholar
  6. Bunn SE, Barton DR, Hynes HBN, Power G, Pope MA (1989) Stable isotope analysis of carbon flow in a tundra river system. Canadian Journal of Fisheries and Aquatic Sciences 46:1769–1775Google Scholar
  7. Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnology and Oceanography 33:1102–1115Google Scholar
  8. de Boer DH (1997) An evaluation of fractal dimensions to quantify changes in the morphology of fluvial suspended sediment particles during baseflow conditions. Hydrological Processes 11:415–426CrossRefGoogle Scholar
  9. Droppo IG (2001) Rethinking what constitutes suspended sediment. Hydrological Processes 15:1551–1564CrossRefGoogle Scholar
  10. Droppo IG, Ongley ED (1994) Flocculation of suspended sediment in rivers of southeastern Canada. Water Research 28:1799–1809CrossRefGoogle Scholar
  11. Droppo IG, Leppard GG, Flannigan DT, Liss SN (1997) The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water, Air and Soil Pollution 99:43–45Google Scholar
  12. France RL (1995) Critical examination of stable isotope analysis as a means for tracing carbon path-ways in stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 52:651–656Google Scholar
  13. France RL (1997) Stable carbon and nitrogen isotopic evidence for ecotonal coupling between boreal forests and fishes. Ecology of Freshwater Fish 6:78–83CrossRefGoogle Scholar
  14. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography 33:1182–1190Google Scholar
  15. Griffiths H (1998) Stable isotopes, integrations of biological, ecological and geochemical processes (Environmental Plant Biology Series). Bios, OxfordGoogle Scholar
  16. Hedges JI, Clark WA, Cowie GL (1988) Organic matter sources to the water column and surficial sediments of a marine bay. Limnology and Oceanography 33:1116–1136CrossRefGoogle Scholar
  17. Johnson SL, Covich AP (1997) Scales of observation of riparian forests and distributions of suspended detritus in a prairie river. Freshwater Biology 37:163–175CrossRefGoogle Scholar
  18. Johnston NT, Fuchs S, Mathias KL (1998) Organic matter sources in undisturbed forested streams in the north-central interior of BC. Riparian Ecosystems Research Program Newsletter. Forest Renewal BC, CanadaGoogle Scholar
  19. Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, New JerseyGoogle Scholar
  20. Kline TC, Goering JJ, Mathisen OA, Poe PH, Parker PL (1990) Recycling of elements transported upstream by runs of Pacific salmon: I. δ15N and δ13C evidence in Sashin Creek, southeastern Alaska. Canadian Journal of Fisheries and Aquatic Sciences 47:136–144Google Scholar
  21. Koetsier P, McArthur JV, Leff LG (1997) Spatial and temporal response of stream bacteria to sources of dissolved organic carbon in a blackwater stream system. Freshwater Biology 37:79–89CrossRefGoogle Scholar
  22. Kranck K, Petticrew EL, Milligan TG, Droppo IG (1993) In situ particle size distributions resulting from flocculation of suspended sediment. Coastal and Estuarine Study Series 42:60–74Google Scholar
  23. Liss SN, Droppo IG, Flannigan D, Leppard GG (1996) Floc architecture in wastewater and natural riverine systems. Environmental Science and Technology 30:680–686CrossRefGoogle Scholar
  24. McConnachie JL (2003) Seasonal variability of fine-grained sediment morphology in a salmon-bearing stream. M.S. Thesis, University of Northern British Columbia, Prince GeorgeGoogle Scholar
  25. McConnachie JL, Petticrew EL (2004) Hydrological and biological event based variability in the fine-grained sediment structure of a small undisturbed catchment. In: Golosov V, Belyaev V, Walling DE (eds) Sediment transfer through the fluvial system. IAHS Pub 288. IAHS Press, Wallingford, pp 459–465Google Scholar
  26. McConnachie JL, Petticrew EL (2006) Tracing organic matter sources in riverine suspended sediment: Implications for fine sediment transfers. Geomorphology 79:13–26CrossRefGoogle Scholar
  27. Minshall GW, Petersen RC, Cummins KW, Bott TL, Sedell JR, Cushing CE, Vannote RL (1985) Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53:1–25CrossRefGoogle Scholar
  28. Owen JS, Mitchell MJ, Michener RH (1999) Stable nitrogen and carbon isotopic composition of seston and sediment in two Adirondack Lakes. Canadian Journal of Fisheries and Aquatic Sciences 56:2186–2192CrossRefGoogle Scholar
  29. Peterson BJ, Howarth RW, Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363CrossRefGoogle Scholar
  30. Petticrew EL (1996) Sediment aggregation and transport in northern interior British Columbia streams. In: Walling DE, Webb BW (eds) Erosion and sediment yield: global and regional perspectives. IAHS Pub 236. IAHS Press, Wallingford, pp 313–319Google Scholar
  31. Petticrew EL, Arocena JM (2003) Organic matter composition of gravel-stored sediments from salmon bearing streams. Hydrobiologia 494:17–24CrossRefGoogle Scholar
  32. Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127:166–170CrossRefGoogle Scholar
  33. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:166–170CrossRefGoogle Scholar
  34. Phillips JM, Walling DE (1999) The particle size characteristics of fine-grained channel deposits in the River Exe Basin, Devon, UK. Hydrological Processes 13:1–19CrossRefGoogle Scholar
  35. Ryder JM (1995) Stuart-Takla watersheds: terrain and sediment sources. Work Paper 03/1995. BC Ministry of Forests, VictoriaGoogle Scholar
  36. Sand-Jensen K (1998) Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biology 39:663–679CrossRefGoogle Scholar
  37. Soulsby C, Youngson AF, Moir HJ, Malcolm IA(2001) Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Science of the Total Environment 265:295–307CrossRefGoogle Scholar
  38. Tockner K, Pennetzdorfer D, Reiner N, Schiemer F, Ward JV (1999) Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwater Biology 41:521–535CrossRefGoogle Scholar
  39. van Leussen W (1999) The variability of settling velocities of suspended fine-grained sediment in the Ems Estuary. Journal of Sea Research 41:109–118CrossRefGoogle Scholar
  40. Webster JR, Ehrman TP (1996) Solute dynamics. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press Inc., San Diego, 145–160Google Scholar


  1. Amos CL, Grant J, Daborn DA, Black K (1992) Sea carousel — A benthic annular flume. Esturaine, Coastal and Shelf Science 34:557–577CrossRefGoogle Scholar
  2. Buffle J, Leppard GG (1995a) Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ Sci Technol 29:2169–2175CrossRefGoogle Scholar
  3. Buffle J, Leppard GG (1995b) Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results. Environ Sci Technol 29:2176–2184CrossRefGoogle Scholar
  4. Grolimund D, Borkovec M, Barmettier K, Sticher H (1996) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ Sci Technol 30:3118–3123CrossRefGoogle Scholar
  5. Huber S, Frimmel FH (1992) A liquid Chromatographie system with multi-detection for the direct analysis of hydrophilic organic compounds in natural waters. Fresenius’ Z Anal Chem 342:198–200CrossRefGoogle Scholar
  6. Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy 66:121–193Google Scholar
  7. Kretzschmar R, Robarge WP, Amoozegar A (1995) Influence of natural organic matter on colloid transport through saprolite. Water Resources Research 31(3):435–445CrossRefGoogle Scholar
  8. Kretzschmar R, Sticher H (1997) Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals. Environ Sci Technol 31:3497–3504CrossRefGoogle Scholar
  9. Lick W (1982) Entrainment, deposition and transport of fine-grained sediments in lakes. Hydrobiologica 91:31–40Google Scholar
  10. Müller RH (1996) Zetapotential und Partikelladung in der Laborpraxis: Einführung in die Theorie, praktische Meßdurchführung, Dateninterpretation. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  11. Roy SB, Dzombak DA (1997) Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ Sci Technol 31:656–664CrossRefGoogle Scholar
  12. Schmitt D, Saravia F, Frimmel FH, Schuessler W (2003) NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Research 37:3541–3550CrossRefGoogle Scholar


  1. Alexander M (2000) Aging, bioavailability and overestimation of risk from environmental pollutants. Environmental Science and Technology 29:2713–2717CrossRefGoogle Scholar
  2. Amiri F, Börnick H, Worch E (2005) Sorption of phenols onto sandy aquifer material: the effect of dissolved organic matter (DOM). Water Research 39:933–941CrossRefGoogle Scholar
  3. Börnick H, Grischek T, Worch E (2003) Ausgewählte Untersuchungsergebnisse von Wasser-und Schlamm-proben aus dem Raum Dresden während des Elbe-Hochwassers im August 2002. Proc. Jahrestagung der Wasserchemischen Gesellschaft, Stade, pp 211–217Google Scholar
  4. Chiou CT, Malcolm RT, Brinton TI, Klie DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environmental Science and Technology 37:5657–5664Google Scholar
  5. Cornelissen G, van Noort PCM, Govers HAJ (1997) Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: Sediment extraction with Tenax(R) and effects of contact time and solute hydrophobicity. Environmental Toxicology and Chemistry 16:1351–1357CrossRefGoogle Scholar
  6. Directive 2000/60/EC of the European Parliament establishing a framework for community action in the field of water policy (2000)Google Scholar
  7. Laor Y, Farmer WJ, Aochi Y, Strom P (1998) Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Research 32:1923–1931CrossRefGoogle Scholar
  8. Latimer JS, Davis WR, Keith DJ (1999) Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events. Estuarine, Coastal and Shelf Science 49:577–595CrossRefGoogle Scholar
  9. Lee S, Kommalapati RR, Valsaraj KT, Pardue JH, Constant WD (2004) Bioavailability of reversibly sorbed and desorption-resistant 1,3-dichlorobenzene from a Louisiana superfund site soil. Water, Air and Soil Pollution 158:207–221CrossRefGoogle Scholar
  10. Pignatello JJ (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Advances in Agronomy 69:1–73CrossRefGoogle Scholar
  11. Reemtsma T, Savric I, Jekel M (2003) A potential link between the turnover of soil organic matter and the release of aged organic contaminants. Environmental Toxicology and Chemistry 22:760–766CrossRefGoogle Scholar
  12. Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments–a perspective on mechanisms, consequences and assessment. Environmental Pollution 108:103–112CrossRefGoogle Scholar


  1. Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. Journal of Hydraulic Engineering 128:2–8CrossRefGoogle Scholar
  2. Bungartz H, Wanner SC (2004) Significance of particle interaction to the modelling of cohesive sediment transport in rivers. Hydrological Processes 18:1685–1702CrossRefGoogle Scholar
  3. Droppo I, Stone M (1994) In-channel surficial fine-grained sediment laminae (part I): physical characteristics and formational processes. Hydrological Processes 8:101–111CrossRefGoogle Scholar
  4. El Ganaoui O, Schaaff E, Boyer P, Amielh M, Anselmet F, Grenz C (2004) The deposition and erosion of cohesive sediments determined by a multi-class model. Estuarine, Coastal and Shelf Science 60:457–475CrossRefGoogle Scholar
  5. Gust G (1990) Method of generating precisely-defined wall shear stresses. US Patent Number: 4,973,1651990Google Scholar
  6. Gust G, Morris MM (1989) Erosion thresholds and entrainment rates of undisturbed in situ sediments. Journal of Coastal Research 5:87–99Google Scholar
  7. Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, UK, pp 149–174Google Scholar
  8. Gust G, Kozerski H-P (1997) In situ sinking particle flux from collection rates of cylindrical traps. Marine Ecology Progress Series 208:93–106CrossRefGoogle Scholar
  9. Köhler J, Gelbrecht J, Pusch M (Hrsg.) (2002) Die Spree–Zustand, Probleme, Entwicklungsmöglichkeiten. Limnologie Aktuell, Bd. 10, E. Schweizerbar’sche Verlagsbuchhandlung, Stuttgart, pp 384Google Scholar
  10. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36CrossRefGoogle Scholar
  11. Redondo JM, Durrieu de Madron X, Medina P, Sanchez MA, Schaaff E (2001) Comparison of sediment resuspension experiments in sheared and zero-mean turbulent flows. Continental Shelf Research 21:2095–2103CrossRefGoogle Scholar
  12. Shand CA, Smith S, Edwards AC, Fraser AR (2000) Distribution of phosphorus in particulate, colloidal and molecular-sized fractions of soil solution. Water Research 34(4):1278–1284CrossRefGoogle Scholar
  13. Sharpley A, Krogstad T, McDowell R, Kleinman P (2003) Phosphorus transport in riverine systems. Encyclopedia of Water Science, Marcel Dekker Inc. New YorkGoogle Scholar
  14. Svendsen LM, Kronvang B, Kristensen P, Graesbol P (1995) Dynamics of phosphorus-compounds in a lowland river system–importance of retention and nonpoint sources. Hydrological Processes 9(2):119–142CrossRefGoogle Scholar
  15. Tengberg A, Stahl H, Gust G, Müller V, Arning U, Andersson H, Hall POJ (2004) Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progress in Oceanography 60:1–28CrossRefGoogle Scholar
  16. Thomas SA, Newbold JD, Monaghan MT, Minshall GW, Georgian T, Cushing CE (2001) The influence of particle size on seston deposition in streams. Limnology and Oceanography 46(6): 1415–1424CrossRefGoogle Scholar
  17. Witt O, Westrich B (2003) Quantification of erosion rates for undisturbed contaminated cohesive sediment cores by image analysis. Hydrobiologia 494:271–276CrossRefGoogle Scholar


  1. Buzier R, Tusseau-Vuillemin M-H, Mouchel J-M (2006) Evaluation of DGT as a metal speciation tool in wastewater. Sci Tot Environ 358:277–285CrossRefGoogle Scholar
  2. Calmano W, Ahlf W, Förstner U (1988) Study of metal sorption/desorption processes on competing sediment components with a multichamber device. Environ Geol Water Sci 11:77–84CrossRefGoogle Scholar
  3. Calmano W, von der Kammer F, Schwartz R (2005) Characterization of redox conditions in soils and sediments: heavy metals. In: Lens P, Grotenhuis T, Malina G, Tabak H (eds) Soil and Sediment remediation, IWA Publ. London UK, pp 102–120Google Scholar
  4. Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-films gels. Nature 367:546–548CrossRefGoogle Scholar
  5. Fengler G, Förstner U, Gust G (1999) Verification experiments on delayed metal release from sediments using a hydrodynamically controlled erosion apparatus (in German). Abstract Annual Meeting German Society of Water Chemistry, Regensburg, pp 240–243Google Scholar
  6. Förstner U, Calmano W, Ahlf W (1999) Sedimente als Schadstoffsenken und-quellen: Gedächtnis, Schutzgut, Zeitbombe, Endlager. In: Frimmel FH (Hrsg.) Wasser und Gewässer–Ein Handbuch, Spektrum Akademischer Verlag Heidelberg, pp 249–279Google Scholar
  7. Hong J, Calmano W, Wallmann K, Petersen W, Schroeder F, Knauth H-D, Förstner U (1991) Change in pH and release of heavy metals in the polluted sediments of Hamburg-Harburg and the down-stream Elbe during oxidation. In: Farmer JG (ed) Heavy Metals in the Environment, vol. 2. CEP Consultans, Edinburgh, pp 330–333Google Scholar
  8. Hong J, Förstner U, Calmano W (1994) Effects of redox processes on acid-producing potential and metalmobility in sediments. In: Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability–Physical, Chemical and Biological Interactions, Lewis Publishers, Boca Raton, pp 119–141Google Scholar
  9. Naylor C, Davison W, Motelica-Heino M, Van Den Berg GA, Van Der Heijdt LM (2004) Simultaneous release of sulfide with Fe, Mn, Ni and Zn in marine harbour sediment measured using a combined metal/sulfide DGT probe. Sci Tot Environ 328:275–286CrossRefGoogle Scholar
  10. Naylor C, Davison W, Motelica-Heino M, Van Den Berg GA, Van Der Heijdt LM (2006) Potential kinetic availability of metals in sulphidic freshwater sediments. Sci. Tot. Environ. 357:208–220CrossRefGoogle Scholar
  11. Peiffer S (1997) Umweltgeochemische Bedeutung der Bildung und Oxidation von Pyrit in Gewässer-sedimenten. Bayreuther Forum Ökologie, Universität Bayreuth, vol. 47Google Scholar
  12. Schwartz R (2006) Geochemical characterization and erosion stability of fine-grained groyne field sediments in the Middle Elbe River. Acta Hydrochim Hydrobiol 34:223–233CrossRefGoogle Scholar
  13. Tusseau-Vuillemin M-H, Gilbin R, Taillefert M (2003) A dynamic numerical model to characterize labile metal complexes collected with diffusion gradient thin films devices. Environ Sci Technol 37:1645–1652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ellen L. Petticrew
    • 1
  • Jennifer L. McConnachie
    • 2
  1. 1.FRBC Endowed Research, Endowed Chair of Landscape Ecology, Geography ProgramUniversity of Northern British ColumbiaPrince GeorgeCanada
  2. 2.Northgate Minerals CorporationSmithersCanada

Personalised recommendations