Transport Modeling

  • Mark Markofsky
  • Bernhard Westrich
  • George K. Jacoub
Part of the Environmental Science and Engineering book series (ESE)


Contaminants such as heavy metals or organic pollutants are adsorbed to fine sediment particles which are transported through the river system and deposited in the regions of low flow velocities. This results in potential sources of contaminants called “hot spots” which can be eroded by floods causing deterioration of the river water quality. Therefore, the erosion, transport and deposition of contaminated sediments play a significant role in water resources engineering and management. It is a challenging task to model and predict the pathway and fate of contaminated sediments with emphasis on their spatial and temporal distribution in surface waters.


Sediment Transport Suspended Sediment Suspended Particulate Matter Suspended Sediment Concentration Settling Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beulleudy Ph, SOGREAH (2000) Numerical simulation of sediment mixture deposition Part 1: analysis of a flume experiment. Journal of Hydraulic Research 38(6)Google Scholar
  2. Beulleudy Ph, SOGREAH (2001) Numerical simulation of sediment mixture deposition Part 2: analysis of a flume experiment. Journal of Hydraulic Research 39(1)Google Scholar
  3. Brooks AN, Hughes TJR (1982) Streamline Upwind Petrov Galerkin formulations for convection dominated flows with particular emphasis on the Naiver-Stokes equations. Journal of Computer Methods in Applied Mechanics and Engineering 32:199–259CrossRefGoogle Scholar
  4. Carroll J, Harms IH (1999) Uncertainty analysis of partition coefficients in a radionuclide transport model. Journal of Water Research 33:2617–2626CrossRefGoogle Scholar
  5. Chapra SC (1997) Surface water-quality modelling. Mc Graw-Hill, New YorkGoogle Scholar
  6. Di Silvio G (1991) Sediment exchange between stream and bottom: a four-layer model. Proceeding of the international Grain Sorting Seminar, Mitteilung der Versuchanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, vol. 117, pp 191–196Google Scholar
  7. EDF (2002) TELEMAC Modelling System, 2D-Hydrodynamics software, Principles manual-validation documents. Direction des Etudes et Recherches, Distributed by SOGREAH consultants, edn 5.0Google Scholar
  8. Haag I (2003) Der Sauerstoffhaushalt staugeregelter Flüsse am Beispiel des Neckars–Analysen, Experimente, Simulationen. Mitteilung, Institute of Hydraulic Engineering (IWS), University of Stuttgart, No. 122Google Scholar
  9. Hinkelmann R (2002) Efficient Numerical Methods and Information-Processing Techniques in Environment Water. Mitteilung, Institute of Hydraulic Engineering (IWS), University of Stuttgart, No. 117Google Scholar
  10. Jacoub G (2004) Development of a 2-D numerical module for particulate contaminant transport in flood retention reservoirs and impounded rivers. Doctoral thesis, Institute of Hydraulic Engineering (IWS), University of Stuttgart, No. 133Google Scholar
  11. Jacoub G, Westrich B (2004) 2-D numerical code to simulate the transport and deposition of dissolved and particulate contaminants in a flood retention reservoir. International Conference on HydroScience and Engineering, ICHE 2004, vol. 6, pp 272–274Google Scholar
  12. Jacoub G, Westrich B (2006) Effect of river groyne structures on flow, sedimentation and erosion dynamics in rivers (Case study: the river Elbe). The International General Assembly Conference EGU-2006, Vienna-AustriaGoogle Scholar
  13. James A (1993) An Introduction to Water Quality Modeling. Second editionGoogle Scholar
  14. Kelly DW, Nakazawa S, Zienkiewict OC, Heinrich JC (1980) A note of upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problem. International Journal of Numerical Methods Engineering 15:1705–1711CrossRefGoogle Scholar
  15. Santschi PH, Honeyman BD (1989) Radionuclides in aquatic environments. Journal of Radiation Physics and Chemistry 34(2):213–240Google Scholar
  16. Sieben A (1996) One dimensional models for mountain-river morphology. Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, Report no. 96-2Google Scholar
  17. Thomann RV, Mueller JA (1987) Principles of Surface Water Quality Modelling and Control. Harper International editionGoogle Scholar


  1. BfG (2005) Ergebnisse aus dem begleitenden Untersuchungsprogramm für die Umlagerung von Baggergut in die fließende Welle unterhalb der Staustufe Iffezheim/Rhein. BfG report 1474, Koblenz, in GermanGoogle Scholar
  2. Boguslavsky S (2000) Orcanigc Sorption and Cation Exchange Capacity of Blacial Sand, Long Island. State University of New York, online published: Google Scholar
  3. Dreher T(2005) Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit wandnahen turbulenten Strömungsbedingungen. Online published: 2005/2263/; urn:nbn:de:bsz:93-opus-22633, in German
  4. Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics 5(4):544–580CrossRefGoogle Scholar
  5. Electricite de France (EDF) (2004) TELEMAC modelling system. Distributed by SOGREAH consultants Gualtieri C (2004) Interaction Between Hydrodynamics and Mass-Transfer at the Sediment-Water Interface. iEMSs: Manno, Switzerland, 2004. ISBN 88-900787-1-5Google Scholar
  6. Krone RB (1962) Flume studies of the transport of sediment in estuarial shoaling processes. Hydr. Eng. Lab. and Sanit. Eng. Res. Lab., Univ. of California, BerkeleyGoogle Scholar
  7. Partheniades E (1965) Erosion and deposition of cohesive soils. Amer. Soc. Civ. Eng., J. Hydraulics Division, HY 1:105–139Google Scholar
  8. Kuijper C, Cornelisse JM, Winterwerp JC (1989) Research on erosive properties of cohesive sediments. J. Geophysical Research 94(C10):14341–14350Google Scholar
  9. Metha, AJ (1988) Laboratory Studies on Cohesive Sediment Deposition and Erosion. In: van Leussen W (ed) Physical Processes in Estuaries. Springer-Verlag Berlin Heidelberg New York, pp 427–445Google Scholar
  10. Stumm W, Morgan JJ (1996) Aquatic Chemistry. Wiley-InterScience, New York Chichester Brisbane Toronto SingaporeGoogle Scholar
  11. van Rijn L (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications Amsterdam OldemarktGoogle Scholar
  12. Westrich B, Juraschek M (1985) Flow transport capacity for suspended sediment. International association for hydraulic research 21st Congress, Melbourne, vol. 3, pp 590–594Google Scholar
  13. Westrich B (1988) Fluvialer Feststofftransport–Auswirkung auf die Morphologie und Bedeutung für die Gewässergüte. Oldenburg Verlag, München Wien, in GermanGoogle Scholar
  14. WSA Freiburg (2002) Schlußbericht der Arbeitsgruppe “Baggerungen”. Distributed by WSA Freiburg, in GermanGoogle Scholar
  15. Zanke U (1982) Grundlagen der Sedimentbewegung. Springer-Verlag Berlin Heidelberg New York, in GermanGoogle Scholar


  1. Argaman Y, Kaufman WJ Turbulence and Floculationt J Sanitary Engineering ASCE 96(SA2):223–241Google Scholar
  2. Bornhold J, Puls W, Kühl H (1992) Die Flockenbildung von Elbeschwebstoff: Untersuchungen mit Fraktionen unterschiedlicher Sinkgeschwindigkeit. GKSS-ForschungszentrumGoogle Scholar
  3. De Brouwer JFC, Ruddy GK, Jones TER, Stal LJ (2002) Sorption of EPS to Sediment Particles and the Effect on the Rheology of Sediment Slurries. Biogeochemistry(61), 57–71CrossRefGoogle Scholar
  4. Ditschke D, Markofsky M (2006 in Print) A Time Dependent Flocculation Model Intercoh 2005Google Scholar
  5. Dyer KR (1989) Sediment Processes in Estuaries: Future Research Requirements. J Geophys Res 94(C10): 14327–14332CrossRefGoogle Scholar
  6. Fengler G, Köster M, Meyer-Reil LA (2004) Charakterisierung mikrobieller Lebensgemeinschaften in resuspendierten Sedimenten. SEDYMO-Workshop: Feinsedimentdynamik und Schadstoffmobilität in Fließgewässern, pp 25–26Google Scholar
  7. Flesch JC, Spicer PT, Pratsinis SE (1999) Laminar and Turbulent Shear-Induced Flocculation of Fractal Aggregates. American Insitute of Chemical Engineers 45(5): 1114–1124Google Scholar
  8. Förstner U (2004) Sediment Dynamics and Pollutant Mobility in Rivers: An Interdisciplinary Approach. Lakes and Reservoirs: Research and Management (9):25–40Google Scholar
  9. Han M, Lawler DF (1992) The (Relative) Insignificance of G in Flocculation. J Am Water Works Ass 84(10):79–91Google Scholar
  10. Hervouet JM (1991) TELEMAC, a Fully Vectorized Finite Element Software for Shallow Water Equations. Second International Conference on Computer Methods and Water ResourcesGoogle Scholar
  11. Kühn G, Jirka GH (2006) Fine Sediment Behavior in Open Channel Turbulence: an Experimental Study. Intercoh 2005Google Scholar
  12. Li X, Logan BE (1997) Collision Frequencies of Fractal Aggregates with Small Particles in a Turbulently Sheared Fluid. Environmental Science Technology 31(4):1237–1242CrossRefGoogle Scholar
  13. Lick W, Lick J, Ziegler K (1992) Flocculation and its effect on the vertical transport of fine-grained sediments. Hydrobiologia (235/236):1–16Google Scholar
  14. Malcherek A (2005) Mathematical Module SediMorph–Validation Document Version 1.1. In Technical Report. Bundesanstalt für WasserbauGoogle Scholar
  15. Malcherek A, Markofsky M, Zielke W (1995) Numerical Modelling of Settling Velocity Variations in Estuaries. In: Arch. Hydrobiol. Spec. Issues Advanc. Limnil 47:353–362Google Scholar
  16. Malcherek A (1995) Mathematische Modellierung von Strömungen und Stofftransportprozessen in Ästuaren, Institut für Strömungsmechanik und elektronisches Rechnen im Bauwesen, Universität Hannover, Bericht Nr. 44/1995, HannoverGoogle Scholar
  17. Nezu I, Nakagawa H (1993) Turbulence in Open Channel Flow. IAHR/AIRH Monograph Series Balkema Publishers, RotterdamGoogle Scholar
  18. Smoluchofski M (1917) Versuch einer Mathematischen Theorie der Koagulationskinetik Kolloider Lösungen. Zeitschrift für Physikalische Chemie 92:129–168Google Scholar
  19. Stolzenbach KD, Elimelich M (1994) The Effect of Density on Collision Between Sinking Particles: Implication for Particle Aggregation in the Ocean. Journal of Deep Sea Research I 41(3):469–483CrossRefGoogle Scholar
  20. Van Leussen W (1994) Estuarine Macroflocs and their Role in Fine-Grained Sediment Transport. Dissertation, University of UtrechtGoogle Scholar
  21. Van Leussen W (1997) The Kolmogorov Microscale as a Limiting Value for the Floc Size of Suspended Fine-Grained Sediments in Estuaries. Cohesive Sediments, pp 45–62Google Scholar
  22. Winterwerp JC (1998) A Simple Model for Turbulence Induced Flocculation of Cohesive Sediments. Journal of Hydraulic Engineering Research 36(3):309–326CrossRefGoogle Scholar
  23. Winterwerp JC (1999) On the Dynamics of High-Concentrated Mud Suspensions. Dissertation, TU DelftGoogle Scholar


  1. Bagnold RA (1962) Auto-suspension of transported sediment; Turbidity currents. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 265, no. 1322, pp 315–319CrossRefGoogle Scholar
  2. Bagnold RA (1966) An approach to the sediment transport problem from general physics, US Geological Survey Professional Paper 422-1, U.S. Department of the InteriorGoogle Scholar
  3. Baud O, Hager WH (2000) Tornado vortices in settling tanks. J Env Eng, 126(2): 189–191CrossRefGoogle Scholar
  4. Bennett JP (1973) An investigation of the suspended load transport efficiency in the Bagnold equation. IAHR Intl Symp River Mechanics, Bangkok, pp 455–463Google Scholar
  5. Best J (2005) Kinematics, topology and significance of dune-related macroturbulence: some observations from the laboratory and field. Spec Publs Int Ass Sediment 35:41–60Google Scholar
  6. Black TJ (1966) Some practical applications of a new theory of wall turbulence. Proc. Heat Transfer and Fluid Mech. Inst., pp 366–386Google Scholar
  7. ten Brinke WBM (1997) Temporal variability in aggregate size and settling velocity in the Oosterschelde, The Netherlands. In: N Burt, WR Parker, Watts J (eds) Cohesive Sediments. John Wiley & Sons, ChichesterGoogle Scholar
  8. Burt N, Parker WR, Watts J (Eds) (1997) Cohesive Sediments. John Wiley & Sons, ChichesterGoogle Scholar
  9. Cao Z, Carling PA (2002) Mathematical modelling of alluvial rivers: reality and myth. Proc Inst Civil Engrs, Water and Maritime Eng, Part 1 Sept 02 (3), pp 207–219; Part 2 Dec 02 (4), pp 297–307Google Scholar
  10. Celik I, Rodi W (1984) A deposition–entrainment model for suspended sediment transport. Sonderforschungsbereich 210, Universität KarlsruheGoogle Scholar
  11. Celik I, Rodi W (1991) Suspended sediment-transport capacity for open channel flows. ASCE J Hydr Eng, 117(2):191–204Google Scholar
  12. Chen MS, Wartel S, VanEck B, Van Maldegem D (2005) Suspended matter in the Scheldt Estuary. Hydrobiologia 540:79–104CrossRefGoogle Scholar
  13. Desmit X, Vanderborght J-P, Regnier P, Wollast R (2005) Control of phytoplankton production by physical forcing in a strongly tidal, well-mixed estuary. Biogeosciences 2:205–218Google Scholar
  14. Dinkelacker A (1982) Do tornado-like vortices play a role in turbulent mixing processes? In: Structure of turbulence in heat and mass transfer (Zaric ZP, Editor) Washington DC, Hemisphere Publishing Corp., pp 59–72Google Scholar
  15. Einstein HA (1950) The bed-load function for sediment transportation in open channel flows, USDA Soil Conservation Service (Washington DC), Technical Bulletin no. 1026Google Scholar
  16. Francken FD, Wartel SD, Parker RD, Taverniers ED (2004) Factors influencing subaqueous dunes in the Scheldt Estuary. Geo-Marine Letters 24(1):14–21CrossRefGoogle Scholar
  17. Förstner U (2004) Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Lakes and Reservoirs: Research and Management 9:25–40CrossRefGoogle Scholar
  18. Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from flume experiments, 1956-61. USGS Professional Paper 462-I,96 pGoogle Scholar
  19. Gyr A, Hoyer K (2006) Sediment transport, a geophysical phenomenon. Fluid Mechanics and its Applications Vol 82, Springer, Dordrecht, 279 pGoogle Scholar
  20. Ha HK, Chough SK (2003) Intermittent turbulent events over sandy current ripples: a motion-picture analysis of flume experiments. Sedimentary Geology 161(3):295–308CrossRefGoogle Scholar
  21. Hinze JO (1975) Turbulence. McGraw-Hill, New York, 2nd ed, 790 pGoogle Scholar
  22. Huybrechts N, Verbanck MA (2006) Fully-coupled 1D model of mobile-bed alluvial hydraulics with a closure drawn from Rossiter modes resonance concepts. 7th Belgian National Congress on Theoretical and Applied Mechanics, MonsGoogle Scholar
  23. Kausch H, Michaelis W (eds) (1996) Suspended particulate matter in rivers and estuaries, Advances in Limnology, 47, Stuttgart, 573 pGoogle Scholar
  24. Kostaschuk R (2000) A field study of turbulence and sediment dynamics over subaqueous dunes with flow separation. Sedimentology 47:519–531CrossRefGoogle Scholar
  25. Leeder MR (1983) On the dynamics of sediment suspension by residual Reynolds stresses-Confirmation of Bagnold’s theory. Sedimentology 30:485–491CrossRefGoogle Scholar
  26. Levi E (1983a) A universal Strouhal law. J Eng Mech, 109(3):718–727Google Scholar
  27. Levi E (1983b) Oscillatory model for wall-bounded turbulence. J Eng Mech 109(3): 728–740CrossRefGoogle Scholar
  28. Luong GV, Verbanck MA (2007) Froude number conditions associated with full development of 2D bedforms in flumes. Proc 5th IAHR Symp River, Coastal & Estuarine Morphodynamics, Enschede (NL), acceptedMa TL, Verbanck MA (2003) The minimum slope for preventing accumulation of solids in newly designed sewers. Tribune de l’Eau, no. 624/4:50–59Google Scholar
  29. Molinas A, Wu B (2001) Transport of sediment in large sand-bed rivers. J Hydr Res 39(2):135–146CrossRefGoogle Scholar
  30. Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine grained sediment in river sediments: Environmental significance and Management issues. River Research and Applications 21:693–717CrossRefGoogle Scholar
  31. Peters JJ (1976) Sediment transport phenomena in the Zaire River. In: Nihoul JCJ (ed) Bottom turbulence. Elsevier Oceanography series 19, pp 221–236Google Scholar
  32. Regnier P (1997) Long-term fluxes of reactive species in strong tidal estuaries: Model development and application to the Western Scheldt Estuary. Ph.D. thesis, Chemical Oceanography Lab, ULBGoogle Scholar
  33. Rendon-Herrero O (1974) Estimation of washload produced on certain small watersheds. ASCE J Hyd Eng 100(HY7):835–848Google Scholar
  34. Rossiter JE (1962) The effect of cavities on the buffeting of aircraft. Royal Aircraft Establishment, Tech. Memo. 754:1962Google Scholar
  35. Salomons W, Brils J (eds) (2004) Contaminated sediments in European River Basins. SedNet final summary report, 80 pGoogle Scholar
  36. Simons DB, Richardson EV (1966) Resistance to flow in alluvial channels. USGS Prof Paper, 422-JGoogle Scholar
  37. Stein RA (1965) Laboratory studies of total load and apparent bed load. J Geophys Res 70(8): 1831–1842Google Scholar
  38. Toffaleti FB (1968) A Procedure for Computation of the Total River Sand Discharge and Detailed Distribution, Bed to Surface, Technical Report no. 5, Committee of Channel Stabilization, Corps of Engineers, U.S. Army, NovemberGoogle Scholar
  39. Venditti JG, Bauer BO (2005) Turbulent flow over a dune: Green River, Colorado. Earth Surf. Process. Landforms 30:289–304CrossRefGoogle Scholar
  40. Verbanck MA (1995) Transferts de la charge particulaire dans l’égout principal de la ville de Bruxelles. Ph.D. thesis, ULB Dept Water Pollution Control, 193 pGoogle Scholar
  41. Verbanck MA (1996) Assessment of sediment behaviour in a cunette-shaped sewer section. Water Science and Technology 33(9):49–60CrossRefGoogle Scholar
  42. Verbanck MA (2004a) Sediment-laden flows over fully-developed bedforms: first and second harmonics in a shallow, pseudo-2D turbulence environment. In: Jirka GH, Uijttewaal WSJ (eds) Shallow Flows. AA Balkema, pp 231–236Google Scholar
  43. Verbanck MA (2004b) Sand transport at high stream power: towards a new generation of 1D river models? Proc 9th International Symposium on River Sedimentation, Yichang, China, Invited paper, pp 307–318Google Scholar
  44. Verbanck MA (2006) How fast can a river flow over alluvium? J Hydraulic Research, in pressGoogle Scholar
  45. Verbanck MA, Laaji A, Niyonzima A (2002) Computing River Suspended Load over Bedforms in the Lower, Transition and Upper Hydraulic Regime. In: Bousmar D, Zech Y (eds) River Flow. Sweet and Zeitlinger, Lisse, pp 625–632Google Scholar
  46. Wang SY (1979) A review of the effective power of sediment suspension in open channel flow–On the criterion of distinguishing bed material load from wash load. Bulletin of Science 24(9):410–413 (in Chinese)Google Scholar
  47. Wan ZH, Wang ZY (1994) Hyperconcentrated flow. IAHR Monograph, AA Balkema, Rotterdam, 289 pGoogle Scholar
  48. Westrich B, Juraschek M (1985) Flow transport capacity of suspended sediments. XXIst IAHR congress, Melbourne, vol. 3, pp 590–594Google Scholar
  49. Winterwerp JC, van Kesteren WGM (2004) Introduction to the physics of cohesive sediments in the marine environment. Developments in Sedimentology 56, Elsevier, 559 pGoogle Scholar
  50. Yalin MS (1977) Mechanics of sediment transport, 2nd ed. Pergamon Press, OxfordGoogle Scholar
  51. Yalin MS, Ferreira Da Silva AM (2001) Fluvial processes. IAHR Monograph, International Association of Hydraulic Engineering and Research, Delft, The NetherlandsGoogle Scholar
  52. Yang SQ (2005) Sediment transport capacity in rivers. J Hydr Res 42(3):131–138Google Scholar
  53. Yen BC (2000) From modeling the Yellow River to river modeling. In: Soong D, Yen BC (eds) First Sino U.S. Joint Workshop on Sediment Transport and Sediment Induced Disasters, Beijing 15–17 March 1999, Post-Workshop Summary, NSF, 70 pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mark Markofsky
    • 1
  • Bernhard Westrich
    • 2
  • George K. Jacoub
    • 3
  1. 1.Institute of Fluid Mechanics and Computer Applications in Civil EngineeringLeibniz Universität HannoverHannoverGermany
  2. 2.Institute of Hydraulic EngineeringUniversity of StuttgartStuttgartGermany
  3. 3.School of M.A.C.E, Tyndall Centre for Climate Change ResearchUniversity of ManchesterUK

Personalised recommendations