• David M. Paterson
  • Bryan M. Spears
  • Jenna Funnell
  • James Saunders
Part of the Environmental Science and Engineering book series (ESE)


Few studies in the literature compare the sediment stability of depositional habits across marine, freshwater and brackish ecosystems. This is partly because there is conceptual difficulty in comparing different erosional devices but also because scientist often focus on specific habitats. In addition, many field devices generate shear stresses over the 0–1 N m-2 range, with few capable of generating erosive forces beyond this level (Tolhurst et al. 2000). However, habitats such as intertidal deposits and salt marshes are often quite resistant to hydrodynamic forcing and are considered to provide an “ecosystem service” of coastal protection. Most existing measurements have been made within a “measurement comfort zone” (Fig. 3.1), usually where a bed shear stress between approximately 0.1 and 1 N m-2 surpasses the critical threshold. However, the study of a wider range of habitats is fundamental to the understanding of ecosystem dynamics in aquatic environments.


Extracellular Polymeric Substance Critical Shear Stress Cohesive Sediment Bottom Shear Stress Sediment Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin I, Andersen TJ, Edelvang K (1999) The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuarine and Coastal and Shelf Science 49:99–111CrossRefGoogle Scholar
  2. Benoy GA, Kalff J (1999) Sediment acuumulation and Pb burdens in submerged macrophyte beds. Limnology and Oceanography 44(4):1081–1090Google Scholar
  3. Decho W (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20:1257–1273CrossRefGoogle Scholar
  4. Grady JR (1981) Properties of seagrass and sand flat sediments from the intertidal zone of St Andrews Bay, Florida. Estuaries 4(4):335–344Google Scholar
  5. Goto N, Kawamura T, Mitamura O, Terai H (1999) Importance of extracellular organic carbon production in the total primary production by tidal-flat diatoms in comparison to phytoplankton. Marine Ecology Progress Series 190:289–295CrossRefGoogle Scholar
  6. Head RM, Jones RI, Bailey-Watts AE (1999) Vertical movements by planktonic cyanobacterial and the translocation of phosphorus: implications for lake restoration. Aquatic Conservation: Marine and Freshwater Ecosystems 9:111–120CrossRefGoogle Scholar
  7. Hilton J, Lishman P, Allen V (1986) The dominant processes of sediment distribution and focussing in a small, eutrophic, monomictic lake. Limnology and Oceanography 31:125–133Google Scholar
  8. HIMOM (2005) Heirarchical Monitoring Methods. European commission fifth framework programme. Contract: EVK3-CT-2001-00052Google Scholar
  9. Kenworthy WJ, Ziemen JC, Thayer GW (1982) Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 54(2):152–158CrossRefGoogle Scholar
  10. Lick W, Huang H (1993) Flocculation and the physical properties of flocs. In: Mehta AJ (ed) Nearshore and estuarine cohesive sediment transport. AGU, Washington, DC, pp 21–39Google Scholar
  11. Lerman A (1979) Geochemical processes: water and sediment environments. John Wiley and Sons Publishers, New YorkGoogle Scholar
  12. Madsen KN, Nilsson P, Sundbäck K (1993) The influence of benthic micro-algae on the stability of a subtidal sediment. Journal of Experimental Marine Biology and Ecology 170:159–177CrossRefGoogle Scholar
  13. Nedwell DB, Raffaelli DG (eds) (1999) Advances in Ecological Research Estuaries 29. Academic Press, San Diego, CAGoogle Scholar
  14. Nedwell DB, Jickells TD, Trimmer M, Sanders R (1999) Nutrients in estuaries. In: Nedwell DB, Raffaelli DG (eds) Advances in Ecological Research: Estuaries 29. Academic Press, San Diego, CAGoogle Scholar
  15. Packman AI, Jerolmack D (2004) The role of physicochemical processes in controlling sediment transport and deposition in turbidity currents. Marine Geology 204:1–9CrossRefGoogle Scholar
  16. Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnology and Oceanography 24:223–234Google Scholar
  17. Paterson DM (1994) Microbiological mediation of sediment structure and behaviour. In: Stal LJ, Caumette P (eds) Microbial Mats. NATO ASI Series vol. G35, Springer-Verlag, Berlin HeidelbergGoogle Scholar
  18. Paterson DM (1997) Biological mediation of sediment erodibility, ecology and physical dynamics. In: Burt N, Parker R, Watts I (eds) Cohesive Sediments. pp 215–229, Wiley Interscience, ChichesterGoogle Scholar
  19. Paterson DM, Black KS (1999) Water flow, sediment dynamics, and benthic biology. In: Raffaelii D, Nedwell D (eds) Advances in Ecological Research. pp 155–193, Oxford University Press, OxfordGoogle Scholar
  20. Perkins RG, Honeywill C, Consalvey M, Austin HA, Tolhurst TJ, Paterson DM (2003) Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Continental Shelf Research 23:575–586CrossRefGoogle Scholar
  21. Tolhurst TJ (1999) Microbial mediation of intertidal sediment erosion. Ph.D. thesis. University of St AndrewsGoogle Scholar
  22. Tolhurst TJ, Black KS, Paterson DM, Mitchener H, Termaat R, Shayler SA (2000) A comparison and measurement standardisation of four in situ devices for determining the erosion sheer stress of intertidal sediments. Continental Shelf Research 20:1397–1418CrossRefGoogle Scholar
  23. Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnology and Oceanography 40:1243–1253Google Scholar
  24. Weyenmeyer GA, Meili M, Pierson DC (1995) A simple method to quantify sources of settling particles in lakes: resuspension versus new sedimentation of material from planktonic production. Marine and Freshwater Research 46:223–231Google Scholar
  25. Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass and sediment stability in biofilms of intertidal sediments. Microbial Ecology 39:116–127CrossRefGoogle Scholar


  1. Austen I, Witte G (2000) Comparison of the erosion shear stress of oxic and anoxic sediments in the East Frisian Wadden Sea. In: Hemming BW, Delafontaine MT, Liebezeit G (eds) Muddy coast dynamics and resource management, Proc Mar Sci, vol. 2. Elsevier, Amsterdam, pp 75–84CrossRefGoogle Scholar
  2. Datry T, Malard F, Niederreiter R, Gibert J (2003) Video-logging for examining biogenic structures in deep heterogeneous subsurface sediments. C. R. Biologies 326:589–597CrossRefGoogle Scholar
  3. De Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of and intertidal mudflat. Mar Ecol Prog Ser 218:33–44CrossRefGoogle Scholar
  4. De Brouwer JFC, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472CrossRefGoogle Scholar
  5. De Brouwer JFC, Bjelic S, de Deckere, EMGT, Stal, LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Cont Shelf Res 20:1159–1177CrossRefGoogle Scholar
  6. De Deckere EMGT, Tolhurst TJ, de Brouwer JFC (2001) Destabilisation of cohesive intertidal sediments by infauna. Estuar Coast Shelf Sci 56:665–669CrossRefGoogle Scholar
  7. Dreher T (1997) Non intrusive measurement of particle concentration and experimental characterization of sedimentation. Sonderforschungsbericht 404, Universitaet StuttgartGoogle Scholar
  8. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPS)–Part I: Structural and ecological aspects. Water Sci Technol 43(6):1–8Google Scholar
  9. Foerstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical Contaminated Sediments and Soils at the River Basin Scale. J Soil and Sediments 4:247–260CrossRefGoogle Scholar
  10. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Wat Res 30:1749–1758CrossRefGoogle Scholar
  11. Gerbersdorf SU, Jancke T, Westrich B (2005) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments–temporal and vertical pattern at the Lauffen reservoir / river Neckar, Germany. Limnologica 35:132–144Google Scholar
  12. Gerbersdorf SU, Jancke T, Westrich B (2007) Sediment properties for assessing the erosion risk of contaminated riverine sites. Journal of Soils and Sediments: 7(1):25–35CrossRefGoogle Scholar
  13. Haag I, Westrich B (2002) Process governing river water quality identified by principal component analysis. Hydrol Process 16:3113–3130CrossRefGoogle Scholar
  14. Haag I, Kern U, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated sediments. Sci Total Environ 266:249–257CrossRefGoogle Scholar
  15. Jepsen R, Roberts J, Lick W (1997) Effects of bulk density on sediment erosion rates. Water Air Soil Poll 99:21–31Google Scholar
  16. Kern U (1997) Transport von Schwebund Schadstoffen in staugeregelten Fließgewaessern am Beispiel des Neckars. Mitteilungen des Instituts fuer Wasserbau 93. Universitaet StuttgartGoogle Scholar
  17. Kern U, Schuerlein V, Holzwarth M, Haag I, Westrich B (1999) Ein Strömungskanal zur Ermittlung der tiefenabhängigen Erosionsstabilität von Gewässersedimenten: das SETEG-System. Wasserwirtschaft 89:72–77Google Scholar
  18. McNeil J, Lick W (2004) Erosion rates and bulk properties of sediments from the Kalamazoo River. J Great Lakes Res 30:407–418Google Scholar
  19. Olafsson JS, Paterson DM (2004) Alteration of biogenic structure and physical properties by tubebuilding chironomid larvae in cohesive sediments. Aquatic Ecology 38:219–229CrossRefGoogle Scholar
  20. Perkins RG, Honeywill C, Consalvey M, Austin HA, Tolhurst TJ, Paterson DM (2003) Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Cont Shelf Re 23:575–586CrossRefGoogle Scholar
  21. Smith DJ, Underwood GJC (2000) The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. J Phycol 36:321–333CrossRefGoogle Scholar
  22. Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304CrossRefGoogle Scholar
  23. Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between Rates of Microbial Production, Exopolymer Production, Microbial Biomass, and Sediment Stability in Biofilms of Intertidal Sediments. Microb Ecol 39:116–127CrossRefGoogle Scholar
  24. Ziegler CK (2002) Evaluating sediment stability at sites of historic contamination. Environ Manage 29:409–427CrossRefGoogle Scholar
  25. Zipperle J, Deventer K (2003) Wirkungsbezogene Sedimentuntersuchungen zur Ableitung von Qualitätsmerkmalen und Handlungsempfehlungen, Teilprojekt 1: Entwicklung und Erprobung einer Strategie zur Beurteilung der Sedimentbeschaffenheit auf der Basis von Wirktests. LFU KarlsruheGoogle Scholar


  1. Brunk B, Weber-Shirk M, Jensen A, Jirka G, Lion LW (1996) Modeling natural hydrodynamic systems with a differential-turbulence column. J Hydraulic Engineering 122(7):373–380CrossRefGoogle Scholar
  2. Gust G (1990) Method of generating precisely-defined wall shearing stresses. US Patent Number: 4,973,165,1990Google Scholar
  3. Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive sediments–Proc. 4th nearshore and estuarine cohesive sediment transport conference INTERCOH’ 94, Wallingford 1994. Wiley, Chichester, UK:149–174Google Scholar
  4. Hensse J, Müller V, Gust G (1997) Dynamic temperature compensation for hot film anemometry in turbulent flows–necessity and realisation. In: Shen X, Sun X (eds) Modern techniques and measurements in fluid flows–Proceedings of the 3rd conference on fluid dynamic measurement and its applications, Beijing 1997, Int. Academic Publishers, Beijing, PR. of China, ISBN 7-80003-407-0/TBGoogle Scholar
  5. Kleeberg A, Hupfer M, Gust G (2007) Phosphorus Entrainment due to Resuspension, River Spree, NE Germany. This volumeGoogle Scholar
  6. Müller V, Vorrath D, Werner A, Witte G (1995) Schubspannungscharakteristik des EROMES-Systems–Messungen zur Hydrodynamik und Erosionsversuche mit Kaolinit. report GKSS 95/E/43, Geesthacht, Germany, ISSN 0344-9629Google Scholar
  7. Nezu I, Nakagawa H (1993) Turbulence in open-channel flow. IAHR Monograph Series, A. A. Balkema Publishers, Rotterdam, NetherlandsGoogle Scholar
  8. Paterson D (2007) On the Boundaries: Measurements of Extreme Systems. This volumeGoogle Scholar
  9. Siepmann R, von der Kammer F, Calmano W (2007) Mobility of Heavy Metals from Resuspended Anoxic Sediments–Close to Nature Approach in Benthic Chambers. This volumeGoogle Scholar
  10. Tengberg A, Stahl H, Gust G, Müller V, Arning U, Andersson H, Hall POJ (2004) Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progress in Oceanography 60:1–28CrossRefGoogle Scholar


  1. Brunk B, Weber-Shirk M, Jensen A, Jirka G, Lion LW (1996) Modeling natural hydrodynamic systems with a differential-turbulence column. J Hydr Eng 122:373–380CrossRefGoogle Scholar
  2. Brunk B (1997) Turbulent Coagulation of Particles Smaller Than the length Scales of Turbulence and equilibrium Sorption of Phenantrene to Clay. Ph.D. Thesis, Cornell University, New YorkGoogle Scholar
  3. Ditschke D, Markofsky M (2006) A non-equilibrium, multi-class flocculation model. Proc. SEDYMO International Symposium 2006, HamburgGoogle Scholar
  4. Fengler G, Köster M, Meyer-Reil L-A (2006) Sediment erodibility in an intertidal groyne field of the Elbe River: Impact on microbial mediated processes. Proc. SEDYMO International Symposium, HamburgGoogle Scholar
  5. Hopfinger EJ, Toly JA (1976) Spatially decaying turbulence and its relation to mixing across density interfaces. J Fluid Mech 78:155–175CrossRefGoogle Scholar
  6. Nezu I, Nakagawa H (1993) Turbulence in Open-Channel Flow. Rotterdam, Brookfield: A. A. Balkema Srdic A, Fernando HJS, Montenegro L (1996) Generation of nearly isotropic turbulence using two oscillating grids. Exp Fluids 20:395–397Google Scholar
  7. Van Leussen W (1994) Esturaine Macreoflocs and their Role in Fine-Grained Sediment Transport. Ph.D. Thesis, University of Utrecht, UtrechtGoogle Scholar


  1. de Brouwer JFC, Bjelic S, de Deckere EMGT, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Continental Shelf Res 20:1159–1177CrossRefGoogle Scholar
  2. de Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat. Mar Ecol Prog Ser 218:33–44CrossRefGoogle Scholar
  3. de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512CrossRefGoogle Scholar
  4. Decho AW (1990) Microbial exopolymer secretion in ocean environments: their role(s) in webs and marine processes. Oceanography and Marine Biology: An Annual Review 28:73–153Google Scholar
  5. Decho AW, Kawaguchi T, Allison MA, Louchard EM, Reid RP, Stephens FC, Voss KJ, Wheatcroft RA, Taylor BB (2003) Sediment properties influencing upwelling spectral reflectance signatures: The “biofilm gel effect”. Limnol Oceanogr 48:431–443Google Scholar
  6. Fengler G, Köster M, Meyer-Reil LA (2006) Mikrobielle Stoffumsätze an resuspendierten Sedimenten. Final report of the interdisciplinary BMBF-project: Sediment Dynamics and Pollutant Mobility in Rivers (SEDYMO)Google Scholar
  7. Findlay RH, King GM, Watling L (1989) Efficiacy of phospholipids analysis in determining microbial biomass in sediments. Appl Environ Microbiol 55:2888–2893Google Scholar
  8. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs). Part II: Technical aspects. Wat Sci Technol 43:9–16Google Scholar
  9. Graf G, Rosenberg R (1997) Bioresuspension and biodeposition: A review. J Mar Systems 11:269–278CrossRefGoogle Scholar
  10. Grant J, Gust G (1987) Prediction of coastal sediment stability from photopigment content of mats of purple bacteria. Nature 330:244–246CrossRefGoogle Scholar
  11. HELCOM, Helsinki Commision (1988) Guidelines for the Baltic monitoring programme for the third stage. Baltic Sea Environ Proc 27D: biological determinants. Helsinki Commission, Helsinki, pp 1–60Google Scholar
  12. Köster M, Dahlke S, Meyer-Reil LA (1997) Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the southern Baltic Sea (Nordrügensche Bodden). Mar Ecol Prog Ser 152:27–39CrossRefGoogle Scholar
  13. Köster M, Meyer-Reil LA (2002) Ecology of marine microbial biofilms. In: Bitton G (ed) The encyclopedia of environmental microbiology. John Wiley & Sons, Inc., New York, pp 1081–1091Google Scholar
  14. Meyercordt J, Meyer-Reil LA (1999) Primary production of benthic microalgae in two shallow coastal lagoons of different trophic status in the southern Baltic Sea. Mar Ecol Prog Ser 178:179–191CrossRefGoogle Scholar
  15. Meyer-Reil LA (1983) Benthic response to sedimentation events during autumn to spring at a shallow-water station in the western Kiel Bight. II. Analysis of benthic bacterial populations. Mar Biol 77:247–256CrossRefGoogle Scholar
  16. Meyer-Reil LA (2006) Mikrobiologie des Meeres. Eine Einführung. Facultas UTB, StuttgartGoogle Scholar
  17. Nichols CM, Lädiére SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589CrossRefGoogle Scholar
  18. Paterson DM, Tolhurst TJ, Black KS, Shayler SA, Mather S, Black I (1999) Measuring the in situ erosion shear stress of intertidal sediments with the cohesive strength meter (CSM). Est Coast Shelf Sci 49:281–294CrossRefGoogle Scholar
  19. Petersen W, Hong J, Williamoski C, Wallmann K (1996) Release of trace contaminants during reoxidation of anoxic sediment slurries in oxic water. Arch Hydrobiol Spec Issues Advanc Limnol 47:295–305Google Scholar
  20. Ploug H, Zimmermann-Timm H, Schweitzer B (2002) Microbial communities and respiration on aggregates in the Elbe Estuary, Germany. Aquat Microb Ecol 27:241–248CrossRefGoogle Scholar
  21. Rieling T (2000) Remineralisation organischen Materials in Boddengewässern Mecklenburg-Vorpommerns unter besonderer Berücksichtigung der Bedeutung von Partikeln und Aggregaten. Ph.D. thesis, University GreifswaldGoogle Scholar
  22. Roast SD, Widdows J, Pope N, Jones MB (2004) Sediment-biota interactions: mysid feeding activity enhances water turbidity and sediment erodability. Mar Ecol Prog Ser 281:145–154CrossRefGoogle Scholar
  23. Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874CrossRefGoogle Scholar
  24. Shanks AL, Edmondson EW (1989) Laboratory-made artificial marine snow: A biological model of the real thing. Mar Biol 101:463–470CrossRefGoogle Scholar
  25. Shimeta J, Amos CL, Beaulieu SE, Katz SL (2004) Resuspension of benthic protists at subtidal coastal sites with differing sediment composition. Mar Ecol Prog Ser 259:103–115CrossRefGoogle Scholar
  26. Sutherland TF, Amos CL, Grant J (1998) The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary. Limnol Oceanogr 43:225–235CrossRefGoogle Scholar
  27. Tsai CH, Lick W (1986) A portable device for measuring sediment resuspension. J Great Lakes Res 12:314–321CrossRefGoogle Scholar
  28. Westrich B, Förstner U (2005) Sediment dynamics and pollutant mobility in rivers (SEDYMO) assessing catchment-wide emission-immission relationships from sediment studies. BMBF coordinated research project SEDYMO (2002–2006). J Soils Sediments 5:197–200CrossRefGoogle Scholar
  29. Widdows J, Brinsley MD, Bowley N, Barrett C (1998) A benthic annular flume for in situ measurement of suspension feeding/deposition rates and erosion potential of intertidal cohesive sediments. Est Coast Shelf Sci 46:27–38CrossRefGoogle Scholar
  30. Widdows J, Brinsley MD, Salkeld PN, Lucas CH (2000) Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar Ecol Prog Ser 194:23–37CrossRefGoogle Scholar
  31. Widdows J, Brinsley MD, Pope ND, Staff FJ, Bolam SG, Somerfield PJ (2006) Changes in biota and sediment erodability following the placement of fine dredged material on upper intertidal shores of estuaries. Mar Ecol Prog Ser 319:27–41CrossRefGoogle Scholar
  32. Ziervogel K (2003) Aggregation and transport behaviour of sediment surface particles in Mecklenburg Bight, south-western Baltic Sea, affected by biogenic stickiness. Ph.D. thesis, University Rostock.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David M. Paterson
    • 1
  • Bryan M. Spears
    • 1
  • Jenna Funnell
    • 1
  • James Saunders
    • 1
  1. 1.Sediment Ecology Research Group, Gatty Marine LaboratoryUniversity of St. AndrewsUK

Personalised recommendations