Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1151 Accesses

Abstract

The overall goal of a well-designed and well-implemented sampling and analysis program is to measure accurately what is really the status of the area studied. Environmental decisions are made on the assumption that analytical results are, within known limits of accuracy and precision, representative of site conditions. Many sources of error exist that could affect the analytical results. These sources of error may include sample collection methods, sample handling, preservation, and transport; personnel training; analytical methods; data reporting; and record keeping. Therefore, a quality assurance program has to be designed for each sediment quality evaluation to minimize these sources of error and to control all phases of the monitoring process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlf W, Heise S (2005) Sediment toxicity assessment: Rationale for effect classes. JSS–J Soils and Sediments 5(1): 16–20

    Article  Google Scholar 

  • Ahlf W, Gratzer H (1999) Erarbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe–Entwicklung methodischer Ansätze. UBA Texte 41/99:1–171

    Google Scholar 

  • Anonymous (1987) GEMS/Water operational guide. World Health Organization (WHO). Geneva

    Google Scholar 

  • Anonymous (2004) Evaluation of Current Gaps and Recommendations for further Actions in the Field of Environmental Analysis and Monitoring. METROPOLIS (Metrology in Support of EU Policies). Position Paper, March 2004, 8 p. Verneuil-en-Halatte/ France

    Google Scholar 

  • Apitz S, White S (2003) A conceptual framework for river-basin-scale sediment management. JSS–J Soils and Sediments 3(3): 125–220

    Google Scholar 

  • ASTM (1995) Standard Guide for Developing Conceptual Site Models for Contaminated Sites. E 1689–1695

    Google Scholar 

  • ASTM (2003) Standard guide for designing biological tests for sediments. E 1367–1403. American Society for Testing and Materials. West Conshohocken, PA, USA, 2003

    Google Scholar 

  • Babut M, Oen A, Hollert H, Apitz SE, Heise S, White S (2007) Prioritization at River Basin Scale, Risk Assessment at Local Scale: suggested approaches. In: Heise S (ed) Sediment Risk Management and Communication, Chapter 4. Elsevier, Amsterdam, pp 107–151

    Google Scholar 

  • Benton MJ, Malott ML, Knight SS, Cooper CM, Benson WH (1995) Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria. Environ Toxicol Chem 14:411–414

    Article  Google Scholar 

  • Burton GA, Norberg-King TJ, Ingersoll CG, Ankley GT, Winger PV, Kubitz J, Lazorchak JM, Smith ME, Greer IE, Dwyer FJ, Call DJ, Day KE, Kennedy P, Stinson M (1996) Interlaboratory study of precision: Hyalella azteca and Chironomus tentans freshwater sediment toxicity assays. Environ Toxicol Chem 15:1335–1343

    Article  Google Scholar 

  • Carr RS, Nipper M (eds) (2001) Summary of a SETAC Technical Workshop “Porewater Toxicity Testing: Biological, Chemical, and Ecological Considerations with a Review of Methods and Applications, and Recommendations for Future Areas of Research, SETAC, Pensacola, FL

    Google Scholar 

  • Crane M, Babut M (2006) Enironmental Quality Standards for Water Framework Directive Priority Substances: Challenges and Opportunities. International Environmental Assessment and Managment in press

    Google Scholar 

  • DiToro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and Chemistry 9:1487–1502

    Article  Google Scholar 

  • Dickson KL, Giesy JP, Parrish R, Wolfe L (1994) Summary and conclusions. In: Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability–Physical, Chemical and Biological Interactions. pp 221–230. SETAC Publication, Lewis Publ. Boca Raton

    Google Scholar 

  • Ecology (2003) Sediment Sampling and Analysis Plan Appendix. Washington State Department of Ecology, Olympia, WA. Publication no. 03-09-043

    Google Scholar 

  • Environment Canada (1995) Guidance document on measurement of toxicity test precision using control sediment spiked with a reference toxicant. Environment Canada Environmental Protection Series Report EPS l/Rm/30, Ottawa, ON, Canada, 1995

    Google Scholar 

  • Förstner U (1989) Contaminated Sediments, Lecture Notes in Earth Sciences. Springer-Verlag, Berlin

    Google Scholar 

  • Förstner U (2004) Traceability of sediment analysis. Trends Anal Chem 23(3):217–236

    Article  Google Scholar 

  • Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical Contaminated Sediments and Soils at the River Basin Scale: Examples from the Elbe River Catchment Area. JSS–J Soils and Sediments 4(4):247–260

    Google Scholar 

  • Frühling W(2003) Funktionale und strukturelle Untersuchungsparameter für mikrobielle Bodenbiozönosen und ihr ökotoxikologischer Nutzen. Dissertation at Umweltschutztechnik, Technische Universität Hamburg-Harburg Hamburg 167 pp

    Google Scholar 

  • Greene MW, Bulich AA, Underwood SR (1992) Measurement of soil and sediment toxicity to bioluminescent bacteria when in direct contact for a fixed time period. Proceedings, 65th Annual Conference and Exposition of the Water Environment Federation, New Orleans, LA, USA, September 20–24, pp 53–63

    Google Scholar 

  • Heise S, Ahlf W (2005) A new microbial contact assay for marine sediments. JSS–J Soils and Sediments 5(1):9–15

    Article  Google Scholar 

  • Heise S, Claus E, Heininger P, Krämer T, Krüger F, Schwartz R, Förstner U (2005) Studie zur Schadstoffbelastung der Sedimente im Elbeeinzugsgebiet. Commissioned by the Hamburg Port Authority, Hamburg, 181 pp

    Google Scholar 

  • Heise S, Förstner U, Westrich B, Jancke T, Karnahl J, Salomons W (2004) Inventory of Historical Contaminated Sediment in Rhine Basin and its Tributaries. On behalf of the Port of Rotterdam Rep. Nr.: October 2004,225 pp

    Google Scholar 

  • Heise S, Maaß V, Gratzer H, Ahlf W (2000) Ecotoxicological Sediment Classification–Capabilities and Potentials–Presented for Elbe River Sediments. BfG-Mitteilungen Nr. 22–Sediment Assessment in European River Basins: 96–104

    Google Scholar 

  • Hollert H, Heise S, Pudenz S, Brüggemann R, Ahlf W, Braunbeck T (2002) Application of a Sediment Quality Triad and different statistical approaches (Hasse Diagrams and Fuzzy Logic) for the comparative evaluation of small streams. Ecotoxicology 11:311–321

    Article  Google Scholar 

  • Ingersoll CG, Ankley GT, Baudo R, Burton GA, Lick W, Luoma SN, MacDonald DD, Reynoldson TB, Solomon KR, Swartz RC, Warren-Hicks WJ (1997) Workgroup summary report on uncertainty evaluation of measurement endpoints used in sediment ecological risk assessment. In: Ingersoll CG, Dillon T, Biddinger GR (eds) 297. SETAC Pr.: Pensacola FL

    Google Scholar 

  • Mearns AJ, Swartz RC, Cummins JM, Dinnel PA, Plesha P, Chapman PM (1986) Inter-laboratory comparison of a sediment toxicity test using the marine amphipod, Rheposynius abronius. Mar Environ Res 18:13–37

    Article  Google Scholar 

  • Meybeck M, Kimstach V, Helmer R (1992) Strategies for water quality assessment. In: Chapman D (ed) Water Quality Assessments. A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. Chapter 2, pp 19–50. Chapman & Hall, London

    Google Scholar 

  • Mudroch A, Azcue JM (1995) Manual of Aquatic Sediment Sampling. Lewis Publ. Boca Raton

    Google Scholar 

  • Quevauviller P (ed) (2002) Methodologies for Soil and Sediment Fractionation Studies. 180 p. The Royal Society of Chemistry, Cambridge UK

    Google Scholar 

  • Quevauviller P (2004) Traceability of environmental chemical measurements. Trends Anal Chem 23(3):171–177

    Article  Google Scholar 

  • Ringwood AH, DeLorenzo ME, Ross PE, Holland AF (1997) Interpretation of Microtox® solid-phase toxicity tests: The effects of sediment composition. Environ Toxicol Chem 16:1135–1140

    Article  Google Scholar 

  • Rönnpagel K, Jansen E, Ahlf W (1998) Asking for the Indicator Function of Bioassays Evaluating Soil Contamination: Are Bioassay Results Reasonable Surrogates of Effects on Soil Microflora? Chemosphere 6:1291–1304

    Article  Google Scholar 

  • Simpson StL, Bateley GE, Chariton AA, Stauber JL, King CK, Chapman JC, Hyne RV, Gale SA, Roach AC, Maher WA (2005) Handbook for Sediment Quality Assessment, CSIRO, Bangar, NSW, pp 126

    Google Scholar 

  • Suter GA (1993) Ecological Risk Assessment. Boca Raton Florida: Lewis

    Google Scholar 

  • Tessier A, Campbell PGC (1987) Partitioning of trace metals in sediments: Relationship with bioavailability. In: Thomas R, Evans A, Hamilton A, Munawar M, Reynoldson T, Sadar H (eds) Ecological Effects of in situ Sediment Contaminants. Hydrobiologia 149:43–52

    Google Scholar 

  • Wenning RJ, Batley GE, Ingersoll CG, Moore DW (2004) Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. Society of Environmental Toxicology and Chemistry (SETAC). ISBN 1-880611-71-6 (2004)

    Google Scholar 

References

  • Ahlf W, Braunbeck T, Heise S, Hollert H (2002) Sediment and soil quality criteria. In: Burden PR, McKelvie I, Förstner U, Günther H (eds), Environmental Monitoring Handbook. McGraw-Hill, New York 17.1–17.18

    Google Scholar 

  • Ahlf W (2005) Trends in sediment research–dedicated to Prof. Dr. Ulrich Förstner on his 65th birthday. J Soils and Sediments 5:1

    Article  Google Scholar 

  • Ahlf W, Heise S (2005) Sediment toxicity assessment–rationale for effect classes. J Soils and Sediments 5:16–20

    Article  Google Scholar 

  • Altenburger R, Boedeker W, Faust M, Grimme LH (1996) Regulations for combined effects of pollutants: Consequences from risk assessment in aquatic toxicology. Food Chem Toxicol 34: 1155–1157

    Article  Google Scholar 

  • Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38:6353–6362

    Article  Google Scholar 

  • Baborowski M, Lobe I, Krüger F, v Tümpling W, Rupp H, Büttner O, Morgenstern P, Guhr H (2006) Transport and fate of dissolved and suspended matter in the Middle Elbe region during floods. SEDYMO Intern Symp, Hamburg, March 26–29, 2006. Abstract L 13, p 25, Hamburg

    Google Scholar 

  • Burton GA, Chapman PM, Smith EP (2002) Weight of evidence approaches for assessing ecosystem impairment. Human and Ecological Risk Assessment 8:1657–1673

    Article  Google Scholar 

  • Chapman PM (1990) The Sediment Quality Triad approach to determining pollution induced degradation. Sci Tot Environ 97:815–825

    Article  Google Scholar 

  • Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils and Sediments 6:4–8

    Article  Google Scholar 

  • Chapman PM, Power E, Burton G (1992) Interactive assessment in aquatic ecosystems. In: Burton GA (ed) Sediment toxicity assessement. pp 313–340. Lewis Publ, Boca Raton, Fl

    Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    Google Scholar 

  • Förstner U (2004) Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Lakes and Reservoirs: Research and Management 9:25–40

    Article  Google Scholar 

  • Giesy JP, Hoke RA (1990) Freshwater sediment quality criteria: Toxicity bioassessment. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. CRC Press, BocaRaton, pp 265–348

    Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  Google Scholar 

  • Heise S, Ahlf W (2002) The Need for new concepts in risk management of sediments historical developments, future perspectives and new approaches. J Soils and Sediments 2:4–8

    Article  Google Scholar 

  • Heise S, Förstner U, Westrich B, Salomons W, Karnahl J, Jancke T, Schönberger H (2004) Inventory of historical contaminated sediments in Rhine Basin and its tributaries. On behalf of the Port of Rotterdam, October 2004, Hamburg, 225 p

    Google Scholar 

  • Heise S, Claus E, Heininger P, Krämer T, Krüger F, Schwartz R, Förstner U (2005) Studie zur Schadstoffbelastung der Sedimente im Eibeinzugsgebiet: Ursachen und Trends. Hamburg Port Authority. December 2005, Hamburg, 169 p

    Google Scholar 

  • Leipe T, Kersten M, Heise S, Pohl C, Witt G, Liehr G, Zettler M, Tauber F (2005) Ecotoxicity assessment of natural attenuation effects at a historical dumping site in the western Baltic Sea. Mari Poll Bull 50:446–459

    Article  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2004) Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil. Environ Toxicol Chem 23:550–556

    Article  Google Scholar 

  • Rönnpagel K, Janssen E, Ahlf W (1998) Asking for the indicator function of bioassays evaluating soil contamination: Are bioassay results reasonable surrogates of effects on soil microflora? Chemosphere 36:1291–1304

    Article  Google Scholar 

  • Scheifler R, Schwartz C, Echevarria G, De Vaufleury A, Badot PM, Morel JL (2003) “Nonavailable” soil cadmium is bioavailable to snails: Evidence from isotopic dilution experiments. Environmental Science and Technology 37:81–86

    Article  Google Scholar 

  • Traunspurger W, Haitzer M, Hoss S, Beier S, Ahlf W, Steinberg C (1997) Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (nematoda)–A method for testing liquid medium and whole-sediment samples. Environ Toxicol Chem 16:245–250

    Article  Google Scholar 

  • Wenning RJ, Ingersoll CG (2002) Summary of the SETAC Pellston Workshop on Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. Pensacola FL, USA 17–22 August 2002, 48 pp

    Google Scholar 

References

  • Ahlf W, Calmano W, Erhard J, Forstner U (1989) Comparison of 5 Bioassay Techniques for Assessing Sediment-Bound Contaminants. Hydrobiologia 188:285–289

    Google Scholar 

  • Ahlf W, Braunbeck T, Heise S, Hollert H (2002a) Sediment and Soil Quality Criteria. In: Burton F, McKelvie I, Förstner U, Guenther A (eds) Environmental Monitoring Handbook. McGraw-Hill, New York, pp 17–18

    Google Scholar 

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002b) A Guidance for the Assessment and Evaluation of Sediment Quality: A German Approach Based on Ecotoxicological and Chemical Measurements. Journal of Soils and Sediments 2:37–42

    Google Scholar 

  • Ankley G, et al. (1998) Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environmental Toxicology and Chemistry 17:68–87

    Article  Google Scholar 

  • Babut M, Oen A, Hollert H, Apitz S, Heise S (2007) From priority setting to risk ranking: suggested approaches, Chapter 8. In: Heise S (ed) Sediment–Risk management and communication, Elsevier, in press

    Google Scholar 

  • Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments, Journal of Hydraulic Engineering-Asce 128:2–8

    Google Scholar 

  • Blaha L, Hilscherova K, Mazurova E, Hecker M, Jones PD, Newsted JL, Bradley PW, Gracia T, Duris Z, Horka I, Holoubek I, Giesy JP (2006) Alteration of steroidogenesis in H295R cells by organic sediment contaminants and relationships to other endocrine disrupting effects. Environment International 32:749–757

    Article  Google Scholar 

  • Brack W, Altenburger R, Dorusch F, Hubert A, Moder M, Morgenstern P, Moschutz S, Mothes S, Schirmer K, Wennrich R, Wenzel KD, Schuurmann G (2002) Hochwasser 2002: Chemische und toxische Belastung überschwemmter Gemeinden im Raum Bitterfeld Umweltwissenschaften and Schadstoffforschung–Z. Umweltchem. Ökotox 14:213–220

    Google Scholar 

  • Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Analytical Bioanalytical Chemistry 377:397–407

    Article  Google Scholar 

  • Brack W, Bakker J, de Deckere E, Deerenberg C, van Gils J, Hein M, Jurajda P, Kooijman B, Lamoree M, Lek S, López de Alda MJ, Marcomini A, Munoz I, Rattei S, Segner H, Thomas K, von der Ohe PC, Westrich B, de Zwart D, Schmitt-Jansen M (2005) MODELKEY. Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity Environmental Science and Pollution Research 12:252–256

    Google Scholar 

  • Brack W, Schirmer K, Erdinger L, Hollert H (2005b) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environmental Toxicology and Chemistry 24:2445–2458

    Article  Google Scholar 

  • Burton GA (1991) Assessing the toxicity of freshwater sediments. Environmental Toxicology and Chemistry 10:1585–1627

    Article  Google Scholar 

  • Burton Jr. GA, Baudo R, Beltrami M, Rowland C (2001) Assessing sediment contamination using six toxicity assays. Journal of Limnology 60:263–267

    Google Scholar 

  • Calmano W, Hong J, Forstner U (1993) Binding and Mobilization of Heavy-Metals in Contaminated Sediments Affected by Ph and Redox Potential. Water Science and Technology 28:223–235

    Google Scholar 

  • Cappuyns V, Swennen R, Devivier A (2006) Dredged river sediments: Potential chemical time bombs? A case study. Water, Air, and Soil Pollution 171:49–66

    Article  Google Scholar 

  • Chapman PM (1989) Current Approaches to Developing Sediment Quality Criteria. Environmental Toxicology and Chemistry 8:589–599

    Article  Google Scholar 

  • Chapman PM, Power EA, Burton Jr. GA (1992) Integrative Assessments in Aquatic Ecosystems. In: Burton GA (ed) Sediment Toxicity Assessment. Boca Raton, USA, pp 313–340

    Google Scholar 

  • Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? Journal of Soils and Sediments 6:4–8

    Article  Google Scholar 

  • Chen GS, White PA (2004) The mutagenic hazards of aquatic sediments: a review. Mutation Research-Reviews in Mutation Research 567:151–225

    Google Scholar 

  • Davoren M, Ni-Shuilleabhain S, Hartl MGJ, Sheehan D, O’Brien NM, O’Halloran J, Van Pelt F, Mothersill C (2005) Assessing the potential of fish cell lines as tools for the cytotoxicity testing of estuarine sediment aqueous elutriates. Toxicology in Vitro 19:421–431

    Article  Google Scholar 

  • De Brouwer J, Bjelic S, de Deckere E, Stal L (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Continental Shelf Research 20:1159–1177

    Article  Google Scholar 

  • Den Besten PJ, de Deckere E, Babut MP, Power B, Angel DelValls T, Zago C, Oen AMP, Heise S (2003) Biological effects-based sediment quality in ecological risk assessment for European waters. Journal of Soils and Sediments 3:144–162

    Google Scholar 

  • Droppo, I (2004) Structural controls on floc strength and transport. Canadian Journal of Civil Engineering 31:569–578

    Article  Google Scholar 

  • Einsporn S, Broeg K, Koehler A (2005) The Elbe flood 2002-toxic effects of transported contaminants in flatfish and mussels of the Wadden Sea. Marine Pollution Bulletin 50:423–429

    Article  Google Scholar 

  • Förstner U, Müller G (1974) Schwermetalle in Flüssen und Seen. Spinger-Verlag, Heidelberg, 225 pp

    Google Scholar 

  • Förstner U, Westrich B (2005) BMBF coordinated research project SEDYMO (2002-2006): Sediment dynamics and pollutant mobility in river basins. Journal of Soils and Sediments 5:134–138

    Article  Google Scholar 

  • Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical Contaminated Sediments and Soils at the River Basin Scale. Journal of Soils and Sediments 4:247–260

    Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2005) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments–Temporal and vertical pattern at the Lauffen reservoir/river Neckar, Germany. Limnologica 35:132–144

    Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2006) Biostabilisation by polymeric substances in riverine sediments. Environmental Microbiology, under review

    Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2007) Sediment properties for assessing the erosion risk of contaminated riverine sites. Journal of Soils and Sediments, under review

    Google Scholar 

  • Giesy JP, Hoke RA (1989) Fresh-Water Sediment Toxicity Bioassessment–Rationale for Species Selection and Test Design. Journal of Great Lakes Research 15:539–569

    Article  Google Scholar 

  • Giger W, Reinhard M, Schaffner C (1974) Petroleum-derived and indigenous hydrocarbons in recent sediments of Lake Zug. Environmental Science Technology 8:454–455

    Article  Google Scholar 

  • Gonzáles-Vila FJ, Polvillo O, Boski T, Moura D (2003) Biomarker patterns in a time-resolved Holocene/ terminal Pleistocene sedimentary sequence from the Guadiana River estuarine area (SW Portugal/ Spain border), Organic Geochemitry, 1601–1613

    Google Scholar 

  • Grote M, Altenburger R, Brack W, Moschütz S, Mothes S, Michael C, Narten GB, Paschke A, Schirmer K, Walter H, Wennrich R, Wenzel KD, Schuurmann G (2005) Ecotoxicological profiling of transect river Elbe sediments. Acta Hydrochimica et Hydrobiologica 33:555–569

    Article  Google Scholar 

  • Haag I, Kern U, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. Science of the Total Environment 266:249–257

    Article  Google Scholar 

  • Haag I, Hollert H, Kern U, Braunbeck T, Westrich B (2002) Flood Event Sediment Budget for a Lock-Regulated River Reach and Toxicity of Suspended Particles. Proceedings 3rd International Conference on Water Resources and Environment Research (ICWRER), Dresden, 33–37

    Google Scholar 

  • Hallare A, Kosmehl T, Schulze T, Hollert H, Koehler H-R, Triebskorn R (2005) Assessing The Severity of Sediment Contamination in Laguna Lake, Philippines Using A Sediment Contact Assay with Zebrafish (Danio rerio) Embryos. Science of the Total Environment 347:254–271

    Article  Google Scholar 

  • Hilscherova K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environmental Science and Pollution Research 7:159–171

    Google Scholar 

  • Hilscherova K, Kannan K, Kang YS, Holoubek I, Machala M, Masunaga S, Nakanishi J, Giesy JP (2001) Characterization of dioxin-like activity of sediments from a Czech river basin. Environmental Toxicology and Chemistry 20:2768–2777

    Article  Google Scholar 

  • Hilscherova K, Kannan K, Holoubek I, Giesy JP (2002) Characterization of estrogenic activity of riverine sediments from the Czech Republic. Archives Environmental Contamamination Toxicology 43:175–185

    Article  Google Scholar 

  • Hilscherova K, Kannan K, Nakata H, Hanari N, Yamashita N, Bradley PW, McCabe JM, Taylor AB, Giesy JP (2003) Polychlorinated dibenzo-p-dioxin and dibenzofuran concentration profiles in sediments and flood-plain soils of the Tittabawassee River, Michigan. Environmental Science Technology 37:468–474

    Article  Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T (2000a) Cytotoxicity of settling particulate matter (SPM) and sediments of the Neckar River (Germany) during a winter flood. Environmental Toxicology and Chemistry 19:528–534

    Article  Google Scholar 

  • Hollert H, Dürr M, Haag I, Winn N, Holtey-Weber R, Kern U, Färber H, Westrich B, Erdinger L, Braunbeck T (2000b) A combined hydraulic and in vitro bioassay approach to assess the risk of erosion and ecotoxicological implications of contaminated sediments in a lock-regulated river system. In: BfG (ed) Sediment assessement in European River Basins, Reihe: Mitteilungen der Bundesanstalt für Gewässerkunde, Koblenz, Berlin, pp 156–160

    Google Scholar 

  • Hollert H, Dürr M, Olsman H, Halldin K, Bavel Bv, Brack W, Tysklind M, Engwall M, Braunbeck T (2002a) Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the Neckar River. Ecotoxicology 11:323–336

    Article  Google Scholar 

  • Hollert H, Heise S, Pudenz S, Brüggemann R, Ahlf W, Braunbeck T (2002b) Application of a sediment quality triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicology 11:311–321

    Article  Google Scholar 

  • Hollert H, Haag I, Dürr M, Wetterauer B, Holtey-Weber R, Kern U, Westrich B, Färber H, Erdinger L, Braunbeck T (2003a) Untersuchungen zum ökotoxikologischen Schädigungspotenzial und Erosionsrisiko von kontaminierten Sedimenten in staugeregelten Flüssen. Umweltwissenschaften und Schadstoffforschung, Z Umweltchem Ökotox 15:5–12

    Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003b) A New Sediment Contact Assay to Assess Particle-bound Pollutants Using Zebrafish (Danio rerio) Embryos. Journal of Soils and Sediments 3:197–207

    Google Scholar 

  • Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout–How explain deficiencies between bioanalytical effectiveness and chemically determined concentrations? Environmental Science and Pollution Research 12:347–360

    Article  Google Scholar 

  • Holoubek I, Machala M, Štaffová K, Helešic J, Ansorgová A, Schramm KW, Kettrup A, Giesy JP, Kannan K, Mitera J (1998) PCDD/Fs in sediments from Morava River catchment area. Organochlorine compounds 39:261–266

    Google Scholar 

  • Janošek J, Hilscherová K, Bláha L, Holoubek I (2006) Environmental xenobiotics and nuclear receptors-Interactions, effects and in vitro assessment. Toxicology in Vitro 20:18–37

    Article  Google Scholar 

  • Japenga J, Salomons W (1993) Dyke-protected floodplains: a possible chemical time bomb? Land Degradation and Rehabilitation 4:373–380

    Article  Google Scholar 

  • Kammann U, Danischewski D, Vobach M, Biselli S, Theobald N, Reineke N, Hühnerfuss H, Wosniok W, Kinder A, Sierts-Herrmann A, Steinhart H, Vahl HH, Westendorf J (2005a) Bioassay-directed fractionation of organic extracts of marine surface sediments from the north and Baltic Sea part II: Results of the biotest battery and development of a biotest index. Journal of Soils and Sediments 5:225–232

    Article  Google Scholar 

  • Kammann U, Lang T, Vobach M, Wosniok W (2005b) Ethoxyresorufin-O-deethylase (EROD) activity in dab (Limanda limanda) as biomarker for marine monitoring. Environmental Science and Pollution Research 12:140–145

    Article  Google Scholar 

  • Kern U, Westrich B (1997) Sediment budget analysis for river reservoirs. Water, Air, and Soil Pollution 99:105–112

    Google Scholar 

  • Knauert S, Dürr M, Haag I, Braunbeck T, Hollert H (2004) Dioxin-ähnliche Wirksamkeit in der permanenten Fischzelllinie RTL-Wl-Tiefenprofile von Sedimentbohrkernen am Neckar. ALTEX 21:162

    Google Scholar 

  • Koethe F (2003) Existing sediment management guidelines: An overview. What will happen with the sediment/dredged material? Journal of Soils and Sediments, pp 139–143

    Google Scholar 

  • Kosmehl T, Krebs F, Manz W, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine River sediment extracts using the permanent cell lines RTG-2 and RTL-W1 in the comet assay and Ames assay. Journal of Soils and Sediments 4:84–94

    Google Scholar 

  • Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Erdinger L, Braunbeck T, Hollert H (2006) Development of a new contact assay for testing whole sediment genotoxicity in zebra fish larvae. Environmental Toxicology and Chemistry 25:2097–2106

    Article  Google Scholar 

  • Maier M, Kühlers D, Brauch HJ, Fleig M, Maier D, Jirka GH, Mohrlok U, Bethge E, Bernhart HH, Lehmann B, Hillebrand G, Wölz J, Hollert H (2006) Flood retention and drinking water supply–Preventing conflicts of interest. Journal of Soils and Sediments 6:113–114

    Article  Google Scholar 

  • Martínek K, Blecha M, Daněk V, Francù J, Hladíková J (2006) Record of palaeoenvironmental changes in a Lower Permian organic-rich lacustrine succession: Integrated sedimentological and geochemical study of the Rudník member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology 230:85–128

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34:261–289

    Article  Google Scholar 

  • Oetken M, Stachel B, Pfenninger M, Oehlmann J (2005) Impact of a flood disaster on sediment toxicity in a major river system–the Elbe flood 2002 as a case study. Environmental Pollution 134:87–95

    Article  Google Scholar 

  • Paterson D, Tolhurst T, Kelly J, Honeywill C, de Deckere E, Huet V, Shayler S, Black K, de Brouwer J, Davidson I (2000) Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK. Continental Shelf Research 20:1373–1396

    Article  Google Scholar 

  • Perkins RG, Sun H, Watson J, Player MA, Gust G, Paterson DM (2004) In-line laser holography and video analysis of eroded floc from engineered and estuarine sediments. Environmental Science Technology 38:4640–4648

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide; I, Biomarkers and isotopes in the environment and human history. II, Biomarkers and isotopes in petroleum systems and Earth history. Cambridge University Press, Cambridge, 155 pp

    Google Scholar 

  • Power EA, Chapman PM (1992) Assessing sediment quality. In: Burton GA (ed) Sediment toxicity assessment. Lewis-Publishers, Boca Raton, pp 1–18

    Google Scholar 

  • Salomons W, Brils J (2004) Contaminated Sediments in European River Basins–European Sediment Research Network SedNet booklet. online: http://www.sednet.org

  • Schwartz R, Gerth J, Neumann-Hensel H, Bley S, Forstner U (2006) Assessment of highly polluted fluvisol in the Spittelwasser floodplain–Based on national guideline values and MNA-Criteria. Journal of Soils and Sediments 6:145–155

    Article  Google Scholar 

  • SedNet (2004) Sediment, a valuable resource that needs Europe’s attention; SedNet recommendations for sediment research priorities related to the soil research clusters, http://www.sednet.org/materiale/ Sediment_a_valuable_resource.pdf

  • Segner H (1998) Fish cell lines as a tool in aquatic toxicology. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology–Experientia Supplement, vol.86. Birkhäuser, Basel/Switzerland, pp 1–38

    Google Scholar 

  • Seiler TB, Rastall AC, Leist E, Erdinger L, Braunbeck T, Hollert H (2006) Membrane dialysis extraction (MDE): A novel approach for extracting toxicologically relevant hydrophobic organic compounds from soils and sediments for assessment in biotests. Journal of Soils and Sediments 6:20–29

    Article  Google Scholar 

  • Simpson SL, Apte SC, Batley GE (1998) Effect of short term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science and Technology 32:620–625

    Article  Google Scholar 

  • Stoffers P, Summerhayes C, Forstner U, Patchineelam S (1977) Copper and Other Heavy Metal Contamination in Sediments from New Bedford Harbor, Massachusetts: A Preliminary Note. Environmental Science Technology 11:819–821

    Article  Google Scholar 

  • Stout SA, Uhler AD, McCarthy KJ, Emsbo-Mattingly S (2002) Chemical fingerprinting of hydrocarbons. In: Murphy BL, Morrison D (eds) Introduction to environmental forensics. Academic Press, San Diego, pp 139–260

    Google Scholar 

  • Stout SA, Uhler AD, Emsbo-Mattingly SD (2004) Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterways. Environmental Science Technology 38:2987–2994

    Article  Google Scholar 

  • Sumpter JP, Johnson AC (2005) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environmental Science and Technology 39:4321–4332

    Article  Google Scholar 

  • Ulrich M, Schulze T, Leist E, Glaß B, Maier M, Maier D, Braunbeck T, Hollert H (2002) Ökotoxikologische Untersuchung von Sedimenten und Schwebstoffen: Abschätzung des Gefährdungspotenzials für Trinkwasser und Korrelation verschiedener Expositionspfade (acetonischer Extrakt, natives Sediment) im Bakterienkontakttest und Fischeitest Umweltwissenschaften und Schadstoffforschung. Z Umweltchem Ökotox 14:132–137

    Google Scholar 

  • USEPA (2002) A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems, Volume I–An Ecosystem-Based Framework for Assessing and Managing Contaminated Sediments. http://www.cerc.usgs.gov/pubs/sedtox/VolumeI.pdf, 149 p

  • Van Beelen P (2003) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53:795–808

    Article  Google Scholar 

  • Wenning R, Ingersoll C (2002) Summary of the SETAC Pellston Workshop on Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments; 17-22 August 2002; Fairmont, Montana, USA. Society of Environmental Toxicology and Chemistry (SETAC). Pensacola FL, USA. online: http://www.setac.org/files/SQGSummary.pdf

    Google Scholar 

  • Wenning R, Batley G, Ingersoll C, Moore D (2005) Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC, Pensacola, PL

    Google Scholar 

  • Wölz J, Olsman H, Hagberg J, Brack W, Möhlenkamp C, vanBavel B, Engwall M, Claus E, Manz W, Braunbeck T, Hollert H (2007) Effect-directed Analysis to identify AH-Receptor agonists in suspended particulate matter during flood events. to be submitted to Environmental Toxicology and Chemistry

    Google Scholar 

  • Ziegler CK (2002) Evaluating sediment stability at sites with historic contamination. Environmental Management 29:409–427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahlf, W., Heise, S. (2007). Sediment Toxicity Data. In: Westrich, B., Förstner, U. (eds) Sediment Dynamics and Pollutant Mobility in Rivers. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34785-9_10

Download citation

Publish with us

Policies and ethics