Skip to main content

Part of the book series: Mathematics in industry ((TECMI,volume 10))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, R. Deriche, T. Papadopoulo, and J. S ánchez. Symmetrical dense optical flow estimation with occlusion detection. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Computer Vision - ECCV 2002, volume 2350 of Lecture Notes in Computer Science, pages 721-736. Springer, Berlin, 2002.

    Google Scholar 

  2. L. Alvarez, J. Esclarín, M. Lef ébure, and J. S ánchez. A PDE model for computing the optical flow. In Proc. XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, pages 1349-1356, Las Palmas de Gran Canaria, Spain, September 1999.

    Google Scholar 

  3. L. Alvarez, J. Weickert, and J. S ánchez. Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision, 39(1):41-56, August 2000.

    Article  MATH  Google Scholar 

  4. P. Anandan. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2:283-310, 1989.

    Article  Google Scholar 

  5. F. Andreu-Vaillo, V. Caselles, and J. M. Mazon. Parabolic Quasilinaer Equations Mini-mizing Linear Growth Functionals, volume 223 of Progress in Mathematics. Birkh äuser, Basel, 2004.

    Google Scholar 

  6. G. Aubert, R. Deriche, and P. Kornprobst. Computing optical flow via variational techniques. SIAM Journal on Applied Mathematics, 60(1):156-182, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing: Partial Dif-ferential Equations and the Calculus of Variations, volume 147 of Applied Mathematical Sciences. Springer, New York, 2002.

    Google Scholar 

  8. A. Bab-Hadiashar and D. Suter. Robust optic flow computation. International Journal of Computer Vision, 29(1):59-77, August 1998.

    Article  Google Scholar 

  9. J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow techniques. International Journal of Computer Vision, 12(1):43-77, February 1994.

    Article  Google Scholar 

  10. J. Big ün, G. H. Granlund, and J. Wiklund. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):775-790, August 1991.

    Article  Google Scholar 

  11. M. J. Black and P. Anandan. Robust dynamic motion estimation over time. In Proc. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 292-302, Maui, HI, June 1991. IEEE Computer Society Press.

    Google Scholar 

  12. M. J. Black and P. Anandan. The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding, 63(1):75-104, January 1996.

    Article  Google Scholar 

  13. M. J. Black and A. Jepson. Estimating optical flow in segmented images using variable-order parametric models with local deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996.

    Article  Google Scholar 

  14. P. Blomgren and T. F. Chan. Color TV: total variation methods for restoration of vector valued images. IEEE Transactions on Image Processing, 7(3):304-309, March 1998.

    Article  Google Scholar 

  15. A. Borzi, K. Ito, and K. Kunisch. Optimal control formulation for determining optical flow. SIAM Journal on Scientific Computing, 24(3):818-847, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31(138):333-390, April 1977.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, Philadelphia, second edition, 2000.

    MATH  Google Scholar 

  18. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In T. Pajdla and J. Matas, editors, Computer Vision -ECCV 2004, Part IV, volume 3024 of Lecture Notes in Computer Science, pages 25-36. Springer, Berlin, 2004.

    Google Scholar 

  19. T. Brox, R. van den Boomgaard, F. Lauze, J. van de Weijer, J. Weickert, R. Mr ázek, and P. Kornprobst. Adaptive structure tensors and their applications. In J. Weickert and H. Hagen, editors, Visualization and Image Processing of Tensor Fields. Springer, Berlin, 2005. To appear.

    Google Scholar 

  20. T. Brox and J. Weickert. Nonlinear matrix diffusion for optic flow estimation. In L. Van Gool, editor, Pattern Recognition, volume 2449 of Lecture Notes in Computer Science, pages 446-453. Springer, Berlin, 2002.

    Google Scholar 

  21. A. Bruhn and J. Weickert. Confidence measures for variational optic flow methods. In R. Klette, R. Kozera, L. Noakes, and J. Weickert, editors, Geometric Properties from Incomplete Data, Computational Imaging and Vision. Springer, Dordrecht, 2005. To appear.

    Google Scholar 

  22. A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schn örr. Real-time optic flow computation with variational methods. In N. Petkov and M. A. Westenberg, editors, Computer Analysis of Images and Patterns, volume 2756 of Lecture Notes in Computer Science, pages 222-229. Springer, Berlin, 2003.

    Google Scholar 

  23. A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schn örr. Variational optic flow computation in real-time. IEEE Transactions on Image Processing, 14(5):608-615, May 2005.

    Article  MathSciNet  Google Scholar 

  24. A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. Discontinuity-preserving compu-tation of variational optic flow in real-time. In R. Kimmel, N. Sochen, and J. Weickert, editors, Scale-Space and PDE Methods in Computer Vision, volume 3459 of Lecture Notes in Computer Science, pages 585-597, Berlin, 2005. Springer.

    Google Scholar 

  25. A. Bruhn, J. Weickert, T. Kohlberger, and C. Schn örr. A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Technical report, Dept. of Mathematics, Saarland University, Saarbr ücken, Germany, May 2005. Submitted to International Journal of Computer Vision.

    Google Scholar 

  26. A. Bruhn, J. Weickert, and C. Schn örr. Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision, 61(3):211-231, 2005.

    Article  Google Scholar 

  27. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, 2002.

    Google Scholar 

  28. I. Cohen. Nonlinear variational method for optical flow computation. In Proc. Eighth Scandinavian Conference on Image Analysis, volume 1, pages 523-530, Tromsø, Norway, May 1993.

    Google Scholar 

  29. R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 1. Interscience, New York, 1953.

    Google Scholar 

  30. S. Di Zenzo. A note on the gradient of a multi-image. Computer Vision, Graphics and Image Processing, 33:116-125, 1986.

    Article  Google Scholar 

  31. G. Farneb äck. Fast and accurate motion estimation using orientation tensors and para-metric motion models. In Proc. 15th International Conference on Pattern Recognition, volume 1, pages 135-139, Barcelona, Spain, September 2000.

    Google Scholar 

  32. G. Farneb äck. Very high accuracy velocity estimation using orientation tensors, paramet-ric motion, and simultaneous segmentation of the motion field. In Proc. Eighth Interna-tional Conference on Computer Vision, volume 1, pages 171-177, Vancouver, Canada, July 2001. IEEE Computer Society Press.

    Google Scholar 

  33. W. F örstner and E. G ülch. A fast operator for detection and precise location of dis-tinct points, corners and centres of circular features. In Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pages 281-305, Interlaken, Switzerland, June 1987.

    Google Scholar 

  34. D. S. Fritsch. A medial description of greyscale image structure by gradient-limited diffusion. In R. A. Robb, editor, Visualization in Biomedical Computing ’92, volume 1808 of Proceedings of SPIE, pages 105-117. SPIE Press, Bellingham, 1992.

    Google Scholar 

  35. B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills. Recovering motion fields: an analysis of eight optical flow algorithms. In Proc. 1998 British Machine Vision Confe-ence, Southampton, England, September 1998.

    Google Scholar 

  36. I. M. Gelfand and S. V. Fomin. Calculus of Variations. Dover, New York, 2000.

    MATH  Google Scholar 

  37. G. Gerig, O. K übler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11:221-232, 1992.

    Article  Google Scholar 

  38. S. Ghosal and P. Cˇ. Van ěk. Scalable algorithm for discontinuous optical flow estima-tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(2):181-194, February 1996.

    Article  Google Scholar 

  39. F. Glazer. Multilevel relaxation in low-level computer vision. In A. Rosenfeld, editor, Multiresolution Image Processing and Analysis, pages 312-330. Springer, Berlin, 1984.

    Google Scholar 

  40. W. Hackbusch. Multigrid Methods and Applications. Springer, New York, 1985.

    Google Scholar 

  41. F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics: The Approach Based on Influence Functions. MIT Press, Cambridge, MA, 1986.

    MATH  Google Scholar 

  42. F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow using Markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (12):1217-1232, December 1993.

    Article  Google Scholar 

  43. W. Hinterberger, O. Scherzer, C. Schn örr, and J. Weickert. Analysis of optical flow models in the framework of calculus of variations. Numerical Functional Analysis and Optimization, 23(1/2):69-89, May 2002.

    MATH  MathSciNet  Google Scholar 

  44. B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185-203, 1981.

    Article  Google Scholar 

  45. P. J. Huber. Robust Statistics. Wiley, New York, 1981.

    Book  MATH  Google Scholar 

  46. T. Iijima. Basic theory of pattern observation. In Papers of Technical Group on Automata and Automatic Control. IECE, Japan, December 1959. In Japanese.

    Google Scholar 

  47. T. Iijima. Observation theory of two-dimensional visual patterns. In Papers of Technical Group on Automata and Automatic Control. IECE, Japan, October 1962. In Japanese.

    Google Scholar 

  48. S. Ju, M. Black, and A. Jepson. Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency. In Proc. 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 307-314, San Francisco, CA, June 1996. IEEE Computer Society Press.

    Google Scholar 

  49. J. Karlholm. Local Signal Models for Image Sequence Analysis. PhD thesis, Link öping University, Sweden, 1998. Dissertation No. 536.

    Google Scholar 

  50. R. Kimmel, R. Malladi, and N. Sochen. Images as embedded maps and minimal sur-faces: movies, color, texture, and volumetric medical images. International Journal of Computer Vision, 39(2):111-129, September 2000.

    Article  MATH  Google Scholar 

  51. T. Kohlberger, C. Schn örr, A. Bruhn, and J. Weickert. Parallel variational motion estima-tion by domain decomposition and cluster computing. In T. Pajdla and J. Matas, editors, Computer Vision - ECCV 2004, Part IV, volume 3024 of Lecture Notes in Computer Science, pages 205-216. Springer, Berlin, 2004.

    Google Scholar 

  52. A. Kumar, A. R. Tannenbaum, and G. J. Balas. Optic flow: a curve evolution approach. IEEE Transactions on Image Processing, 5(4):598-610, April 1996.

    Article  Google Scholar 

  53. S.-H. Lai and B. C. Vemuri. Reliable and efficient computation of optical flow. Interna-tional Journal of Computer Vision, 29(2):87-105, October 1998.

    Article  Google Scholar 

  54. B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proc. Seventh International Joint Conference on Artificial Intelligence, pages 674-679, Vancouver, Canada, August 1981.

    Google Scholar 

  55. A. Meister. Numerik linearer Gleichungssysteme. Vieweg, Braunschweig, 1999.

    MATH  Google Scholar 

  56. E. M émin and P. P érez. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing, 7(5):703-719, May 1998.

    Article  Google Scholar 

  57. E. M émin and P. P érez. A multigrid approach for hierarchical motion estimation. In Proc. Sixth International Conference on Computer Vision, pages 933-938, Bombay, In-dia, January 1998. Narosa Publishing House.

    Google Scholar 

  58. A. R. Mitchell and D. F. Griffiths. The Finite Difference Method in Partial Differential Equations. Wiley, Chichester, 1980.

    MATH  Google Scholar 

  59. K. W. Morton and L. M. Mayers. Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, UK, 1994.

    MATH  Google Scholar 

  60. H.-H. Nagel. Constraints for the estimation of displacement vector fields from image sequences. In Proc. Eighth International Joint Conference on Artificial Intelligence, volume 2, pages 945-951, Karlsruhe, West Germany, August 1983.

    Google Scholar 

  61. H.-H. Nagel. Extending the ’oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow. In O. Faugeras, editor, Computer Vi-sion - ECCV ’90, volume 427 of Lecture Notes in Computer Science, pages 139-148. Springer, Berlin, 1990.

    Google Scholar 

  62. H.-H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:565-593, 1986.

    Article  Google Scholar 

  63. H.-H. Nagel and A. Gehrke. Spatiotemporally adaptive estimation and segmentation of OF-fields. In H. Burkhardt and B. Neumann, editors, Computer Vision - ECCV ’98, volume 1407 of Lecture Notes in Computer Science, pages 86-102. Springer, Berlin, 1998.

    Google Scholar 

  64. M. Z. Nashed and O. Scherzer. Least squares and bounded variation regularization with nondifferentiable functionals. Numerical Functional Analysis and Optimization, 19:873-901,1998.

    Article  MATH  MathSciNet  Google Scholar 

  65. P. Nesi. Variational approach to optical flow estimation managing discontinuities. Image and Vision Computing, 11(7):419-439, September 1993.

    Article  Google Scholar 

  66. E. P. Ong and M. Spann. Robust optical flow computation based on least-median-of-squares regression. International Journal of Computer Vision, 31(1):51-82, 1999.

    Article  Google Scholar 

  67. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, UK, second edition, 1992.

    MATH  Google Scholar 

  68. M. Proesmans, L. Van Gool, E. Pauwels, and A. Oosterlinck. Determination of optical flow and its discontinuities using non-linear diffusion. In J.-O. Eklundh, editor, Computer Vision - ECCV ’94, volume 801 of Lecture Notes in Computer Science, pages 295-304. Springer, Berlin, 1994.

    Google Scholar 

  69. A. R. Rao and B. G. Schunck. Computing oriented texture fields. CVGIP: Graphical Models and Image Processing, 53:157-185, 1991.

    Article  Google Scholar 

  70. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259-268, 1992.

    Article  MATH  Google Scholar 

  71. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, second edition, 2003.

    MATH  Google Scholar 

  72. G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge, UK, 2001.

    MATH  Google Scholar 

  73. C. Schn örr. Segmentation of visual motion by minimizing convex non-quadratic func-tionals. In Proc. Twelfth International Conference on Pattern Recognition, volume A, pages 661-663, Jerusalem, Israel, October 1994. IEEE Computer Society Press.

    Google Scholar 

  74. C. Schn örr. Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals. Journal of Mathematical Imaging and Vision, 4:189-198,1994.

    Article  MathSciNet  Google Scholar 

  75. C. Schn örr. Convex variational segmentation of multi-channel images. In M.-O. Berger, R. Deriche, I. Herlin, J. Jaffr é, and J.-M. Morel, editors, ICAOS ’96: Images, Wavelets and PDEs, volume 219 of Lecture Notes in Control and Information Sciences, pages 201-207. Springer, London, 1996.

    Google Scholar 

  76. G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford, third edition, 1985.

    MATH  Google Scholar 

  77. R. Szeliski and J. Coughlan. Hierarchical spline-based image registration. In Proc. 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 194-201, Seattle, WA, June 1994. IEEE Computer Society Press.

    Google Scholar 

  78. D. Terzopoulos. Image analysis using multigrid relaxation. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 8(2):129-139, March 1986.

    Article  Google Scholar 

  79. A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady, 4:1035-1038, 1963.

    Google Scholar 

  80. U. Trottenberg, C. Oosterlee, and A. Sch üller. Multigrid. Academic Press, San Diego, 2001.

    MATH  Google Scholar 

  81. D. Tschumperl é and R. Deriche. Diffusion tensor regularization with constraints preser-vation. In Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pat-tern Recognition, volume 1, pages 948-953, Kauai, HI, December 2001. IEEE Computer Society Press.

    Google Scholar 

  82. D. Tschumperl é and R. Deriche. Diffusion PDE's on vector-valued images. IEEE Signal Processing Magazine, 19(5):16-25, 2002.

    Article  Google Scholar 

  83. S. Uras, F. Girosi, A. Verri, and V. Torre. A computational approach to motion perception. Biological Cybernetics, 60:79-87, 1988.

    Article  Google Scholar 

  84. R. A. Varga. Matrix Iterative Analysis. Springer, New York, second edition, 2000.

    MATH  Google Scholar 

  85. R. Wait and A. R. Mitchell. Finite Element Analysis and Applications. Wiley, Chichester, 1985.

    MATH  Google Scholar 

  86. J. Weber and J. Malik. Robust computation of optical flow in a multi-scale differential framework. International Journal of Computer Vision, 14:67-81, 1995.

    Article  Google Scholar 

  87. J. Weickert. Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Technical Report 110, Laboratory of Technomathematics, University of Kaiserslautern, Germany, October 1994.

    Google Scholar 

  88. J. Weickert. Coherence-enhancing diffusion of colour images. Image and Vision Computing, 17(3-4):199-210, March 1999.

    Article  Google Scholar 

  89. J. Weickert and T. Brox. Diffusion and regularization of vector-and matrix-valued im-ages. In M. Z. Nashed and O. Scherzer, editors, Inverse Problems, Image Analysis, and Medical Imaging, volume 313 of Contemporary Mathematics, pages 251-268. AMS, Providence, 2002.

    Google Scholar 

  90. J. Weickert, A. Bruhn, N. Papenberg, and T. Brox. Variational optic flow computation: From continuous models to algorithms. In L. Alvarez, editor, IWCVIA ’03: Interna-tional Workshop on Computer Vision and Image Analysis, volume 0026 of Cuardernos del Instituto Universitario de Ciencias y Technologías Cibern éticas, pages 1-6, Spain, February 2004.

    Google Scholar 

  91. J. Weickert and C. Schn örr. A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision, 45(3):245-264, December 2001.

    Article  MATH  Google Scholar 

  92. J. Weickert and C. Schn örr. Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision, 14(3):245-255, May 2001.

    Article  MATH  Google Scholar 

  93. P. Wesseling. An Introduction to Multigrid Methods. R. T. Edwards, Flourtown, 2004.

    Google Scholar 

  94. D. M. Young. Iterative Solution of Large Linear Systems. Dover, New York, 2003.

    MATH  Google Scholar 

  95. G. Zini, A. Sarti, and C. Lamberti. Application of continuum theory and multi-grid methods to motion evaluation from 3D echocardiography. IEEE Transactions on Ultra-sonics, Ferroelectrics, and Frequency Control, 44(2):297-308, March 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Weickert, J., Bruhn, A., Brox, T., Papenberg, N. (2006). A Survey on Variational Optic Flow Methods for Small Displacements. In: Scherzer, O. (eds) Mathematical Models for Registration and Applications to Medical Imaging. Mathematics in industry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34767-5_5

Download citation

Publish with us

Policies and ethics