Skip to main content
  • 6187 Accesses

Abstract

The vestibular system provides information about the position and motion of the head in space. The receptive elements are the hair cells of the membranous labyrinth. These cells are located in the cristae ampullares of the ampullae of the semicircular canals and in the maculae of the utricle and the saccule. The first-order elements are bipolar neurons, the somata of which constitute the vestibular ganglion, located in the internal auditory meatus. The peripheral processes of these cells terminate on the hair cells. The central processes of the bipolar cells constitute the vestibular part of the eighth cranial nerve, which enters the brain stem at the level of the pontomedullary junction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarian S, Grüsser OJ, Guldin WO (1992) Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J Comp Neurol 326:423–441

    Article  PubMed  CAS  Google Scholar 

  2. Akbarian S, Grüsser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421–437

    Article  PubMed  CAS  Google Scholar 

  3. Bankoul S, Neuhuber WL (1990) A cervical primary afferent input to vestibular nuclei as demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase in the rat. Exp Brain Res 79:405–411

    Article  PubMed  CAS  Google Scholar 

  4. Barmack NH (2005) Inferior olive and oculomotor system. Prog Brain Res 151:269–291

    PubMed  Google Scholar 

  5. Barmack NH, Baughman RW, Eckenstein FP (1992) Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 17:233–249

    Article  Google Scholar 

  6. Barmack NH, Baughman RW, Eckenstein EP, Shojaku H (1992) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    Article  PubMed  CAS  Google Scholar 

  7. Barmack NH, Fredette BJ, Mugnaini E (1998) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  PubMed  CAS  Google Scholar 

  8. Batton RR 3rd, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305

    Article  PubMed  Google Scholar 

  9. Belknap DB, McCrea RA (1988) Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 268:13–28

    Article  PubMed  CAS  Google Scholar 

  10. Brodai A, Pompeiano O (1957) The vestibular nuclei in cat. J Anat 91:438–454

    Google Scholar 

  11. Busch HFM (1961) An anatomical analysis of the white matter in the brain stem of the cat. Van Gorcum, Assen

    Google Scholar 

  12. Büttner-Ennever JA (1999) A review of otolith pathways to brainstem and cerebellum. Ann NY Acad Sci 871:51–64

    Article  PubMed  Google Scholar 

  13. Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    Article  PubMed  CAS  Google Scholar 

  14. Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    Article  PubMed  CAS  Google Scholar 

  15. Cazin L, Precht W, Lannou J (1980) Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat. Pflügers Arch 384:19–29

    Article  PubMed  CAS  Google Scholar 

  16. De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82

    Article  PubMed  Google Scholar 

  17. Dechesne C, Raymond J, Sans A (1984) The efferent vestibular system in the cat: a horseradish peroxidase and fluorescent retrograde tracers study. Neuroscience 11:893–901

    Article  PubMed  CAS  Google Scholar 

  18. Ebata S, Sugiuchi Y, Izawa Y, Shinomiya K, Shinoda Y (2004) Vestibular projection to the periarcuate cortex in the monkey. Neurosci Res 49:55–68

    Article  PubMed  CAS  Google Scholar 

  19. Epema AH, Gerrits NM, Voogd J (1988) Commissural and intrinsic connections of the vestibular nuclei in the rabbit: a retrograde labeling study. Exp Brain Res 71:129–146

    Article  PubMed  CAS  Google Scholar 

  20. Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: A study using HRP and double fluorescent tracer techniques. Exp Brain Res 80:72–82

    Article  PubMed  CAS  Google Scholar 

  21. Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral-and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93

    Article  PubMed  CAS  Google Scholar 

  22. Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral-and frontal-eyed animals. II. Neuronal networks underlying vestibulo-oculomotor coordination. Neuroscience 12:95–109

    Article  PubMed  CAS  Google Scholar 

  23. Gerrits NM, Voogd J (1986) The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62:29–45

    Article  PubMed  CAS  Google Scholar 

  24. Gerrits NM, Voogd J, Magras IN (1985) Vestibular afferents of the inferior olive and the vestibulo-olivocerebellar climbing fiber pathway to the flocculus in the cat. Brain Res 322:355–363

    Google Scholar 

  25. Gerrits NM, Epema AH, van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105:27–33

    Article  PubMed  CAS  Google Scholar 

  26. Goldberg JM (1991) The vestibular end organs: Morphological and physiological diversity of afferents. Curr Opin Neurobiol 1:229–235

    Article  PubMed  CAS  Google Scholar 

  27. Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025

    PubMed  CAS  Google Scholar 

  28. Graf W, Ezure K (1986) Morphology of vertical canal related second order vestibular neurons in the cat. Exp Brain Res 63:35–48

    Article  PubMed  CAS  Google Scholar 

  29. Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci pp 254–259

    Google Scholar 

  30. Haines DE (1976) Cerebellar corticonuclear and corticovestibular fibers of the anterior lobe vermis in a prosimian primate (Galago senegalensis). J Comp Neurol 170:67–95

    Article  PubMed  CAS  Google Scholar 

  31. Highstein SM (1973) Synaptic linkage in the vestibulo-ocular and cerebello-vestibular pathways to the VIth nucleus in the rabbit. Exp Brain Res 17:301–314

    PubMed  CAS  Google Scholar 

  32. Highstein SM (1973) The organization of the vestibulo-oculomotor and trochlear reflex pathways in the rabbit. Exp Brain Res 17:285–300

    PubMed  CAS  Google Scholar 

  33. Highstein SM, Ito M (1971) Differential localization within the vestibular nuclear complex of the inhibitory and excitatory cells innervating 3d nucleus oculomotor neurons in rabbit. Brain Res 29:358–362

    Article  PubMed  CAS  Google Scholar 

  34. Isu N, Uchino Y, Nakashima H, Satoh S, Ichikawa T, Watanabe S (1988) Axonal trajectories of posterior canal-activated secondary vestibular neurons and their coactivation of extraocular and neck flexor motoneurons in the cat. Exp Brain Res 70:181–191

    PubMed  CAS  Google Scholar 

  35. Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 11:467–496

    Google Scholar 

  36. Jankovska E, Lindström S (1972) Morphology of interneurons mediating la reciprocal inhibition of motoneurones in the spinal cord of the cat. J Physiol London 266:805–832

    Google Scholar 

  37. Kokkoroyannis T, Scudder CA, Balaban CD, Highstein SM, Moschovakis AK (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal I. efferent projections. J Neurophysiol 75:725–739

    PubMed  CAS  Google Scholar 

  38. Lobel E, Kleine JF, Leroy-Willig A, Van de Moortele PF, Le Bihan D, Grüsser OJ, Berthoz A (1999) Cortical areas activated by bilateral galvanic vestibular stimulation. Ann NY Acad Sci 871:313–323

    Article  PubMed  CAS  Google Scholar 

  39. Maciewicz RJ, Kaneko CR, Highstein SM, Eagen K (1977) Vestibular and medullary brain stem afferents to the abducens nucleus in the cat. Brain Res 123:229–240

    Article  PubMed  CAS  Google Scholar 

  40. Maklad A, Fritzsch B (2002) The developmental segregation of posterior crista and saccular vestibular fibers in mice: a carbocyanine tracer study using confocal microscopy. Brain Res Dev Brain Res 140:223–236

    Article  Google Scholar 

  41. Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Brain Res Dev Brain Res 140:223–236

    Article  PubMed  CAS  Google Scholar 

  42. Matsushita M, Xiong G (2001) Uncrossed and crossed projections from the upper cervical spinal cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 432:101–118

    Article  PubMed  CAS  Google Scholar 

  43. Matsushita M, Gao X, Yaginuma H (1995) Spinovestibular projections in the rat, with particular reference to projections from the central cervical nucleus to the lateral vestibular nucleus. J Comp Neurol 361:334–344

    Article  PubMed  CAS  Google Scholar 

  44. McCrea RA, Horn AK (2005) Nucleus prepositus. Prog Brain Res 151:205–230

    PubMed  Google Scholar 

  45. McCrea RA, Gdowski G, Luan H (2001) Current concepts of vestibular nucleus function: transformation of vestibular signals in the vestibular nuclei. Ann NY Acad Sci 942:328–344

    Article  PubMed  CAS  Google Scholar 

  46. Minor LB, McCrea RA, Goldberg JM (1990) Dual projections of secondary vestibular axons in the medial longitudinal fasciculus to extraocular motor nuclei and the spinal cord of the squirrel monkey. Exp Brain Res 83:9–21

    Article  PubMed  CAS  Google Scholar 

  47. Muskens LJJ (1913) De rolbeweging en de opstijgende vestibularisverbreiding (Fasciculus Deiters ascendens). Versl Kon Acad Wet: 1478

    Google Scholar 

  48. Naito Y, Newman A, Lee WS, Beykirch K, Honrubia V (1995) Projections of the individual vestibular end-organs in the brain stem of the squirrel monkey. Hear Res 87:141–155

    Article  PubMed  CAS  Google Scholar 

  49. Naito Y, Tateya I, Hirano S, Inoue M, Funabiki K, Toyoda H, Ueno M, Ishizu K, Nagahama Y, Fukuyama H, Ito J (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 12:1562–1578

    Article  Google Scholar 

  50. Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280:231–253

    Article  PubMed  CAS  Google Scholar 

  51. Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA (2003) Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 466:31–47

    Article  PubMed  Google Scholar 

  52. Pompeiano O, Brodai A (1957) Spinovestibular fibers in the cat; an experimental study. J Comp Neurol 108:353–381

    Article  PubMed  CAS  Google Scholar 

  53. Popper P, Ishiyama A, Lopez I, Wackym PA (2002) Calcitonin gene-related peptide and choline acetyltransferase colocalization in the human vestibular periphery. Audiol Neurootol 7:298–302

    Article  PubMed  CAS  Google Scholar 

  54. Reisine H, Highstein SM (1979) The ascending tract of Deiters’ conveys a head velocity signal to medial rectus motoneurons. Brain Res 170:172–176

    Article  PubMed  CAS  Google Scholar 

  55. Ruigrok TJ, Voogd J (1990) Cerebellar nucleoolivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 298:315–333

    Article  PubMed  CAS  Google Scholar 

  56. Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29:467–492

    PubMed  CAS  Google Scholar 

  57. Shinoda Y, Sugiuchi Y, Futami T, Ando N, Kawasaki T (1994) Input patterns and pathways from the six semicircular canals to motoneurons of neck muscles. I. The multifidus muscle group. J Neurophysiol 72:2691–2702

    PubMed  CAS  Google Scholar 

  58. Shinoda Y, Sugiuchi Y, Futami T, Kakei S, Izawa Y, Na J (1996) Four convergent patterns of input from the six semicircular canals to motoneurons of different neck muscles in the upper cervical cord. Ann NYAcad Sci 781:264–275

    Article  CAS  Google Scholar 

  59. Shinoda Y, Sugiuchi Y, Futam T, Ando N, Yagi J (1997) Input patterns and pathways from the six semicircular canals to motoneurons of neck muscles. II. The longissimus and semispinalis muscle groups. J Neurophysiol 77:1234–1258

    PubMed  CAS  Google Scholar 

  60. Shinoda Y, Sugiuchi Y, Izawa Y, Hata Y (2005) Long descending motor tract axons and their control of neck and axial muscles. Prog Brain Res 151:527–563

    PubMed  Google Scholar 

  61. Shiroyama T, Kayahara T, Yasu Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318–332

    Article  PubMed  CAS  Google Scholar 

  62. Simpson JI, Graf W (1985) The selection of reference frames by nature and its investigators. Rev Oculomot Res 1:3–16

    PubMed  Google Scholar 

  63. Spencer RF, Wenthold RJ, Baker R (1989) Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus. J Neurosci. 9:2718–2736

    PubMed  CAS  Google Scholar 

  64. Sugihara I, Ebata S, Shinoda Y (2004) Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol 470:113–133

    Article  PubMed  Google Scholar 

  65. Sugiuchi Y, Kakei S, Izawa Y, Shinoda Y (2004) Functional synergies among neck muscles revealed by branching patterns of single long descending motor-tract axons. Prog Brain Res 143:411–421

    Article  PubMed  Google Scholar 

  66. Thunnissen IE, Epema AH, Gerrits NM (1989) Secondary vestibulocerebellar mossy fiber projection to the caudal vermis in the rabbit. J Comp Neurol 262–277

    Google Scholar 

  67. Ventre J, Faugier-Grimaud S (1988) Projections of the temporo-parietal cortex on vestibular complex in the macaque monkey (Macaca fascicularis). Exp Brain Res 72:653–658

    Article  PubMed  CAS  Google Scholar 

  68. Voogd J (1964) The cerebellum of the cat. Van Gorcum, Assen

    Google Scholar 

  69. Wilson VJ, Schor RH (1999) The neural substrate of the vestibulocollic reflex. What needs to be learned. Exp Brain Res 129:483–493

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto M, Shimoyama I, Highstein SM (1978) Vestibular nucleus neurons relaying excitation from the anterior canal to the oculomotor nucleus. Brain Res 148:31–32

    Article  PubMed  CAS  Google Scholar 

  71. Yingcharoen K, Siegborn J, Grant G (2003) Brainstem projections of different branches of the vestibular nerve: an experimental study by transganglionic transport of horseradish peroxidase in the cat. III. The saccular nerve. Exp Brain Res 151:190–196

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Vestibular System. In: The Human Central Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34686-9_17

Download citation

Publish with us

Policies and ethics