Skip to main content

General Sensory Systems and Taste

  • Chapter
  • 6249 Accesses

Abstract

Conscious perception of cutaneous and proprioceptive sensation and taste depends on conduction pathways that connect peripheral receptors with centres in the diencephalon and the telencephalon. Most of these connections, with the exception of the pathway for taste, are crossed. Initial processing of sensory information occurs in the spinal cord and the dorsal column nuclei for the trunk and the extremities, and in the sensory nuclei of the trigeminal nerve for the face. The first relay for taste is located in the nucleus of the solitary tract in the lower brain stem. Spinal conduction pathways are the anterolateral fasciculus and the dorsal column-medial lemniscus pathway. Both of these systems are crossed. Corresponding paths take their origin from the sensory nuclei of the trigeminal nerve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albe-Fessard D, Boivie J, Grant G, Levante A (1975) Labeling of cells in the medulla oblongata and the spinal cord of the monkey after injections of horseradish peroxidase in the thalamus. Neurosci Lett 1:75–80

    Article  PubMed  CAS  Google Scholar 

  2. Albright BC, Friedenbach DJ (1982) The distribution of lateral funicular and cortical fibers to the dorsal column, Z and X nuclei in the prosimian Galago. Neuroscience 7:1175–1185

    Article  PubMed  CAS  Google Scholar 

  3. Al-Chaer ED, Feng Y, Willis WD (1999) Comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. J Neurophysiol 82:1876–1882

    PubMed  CAS  Google Scholar 

  4. Al-Chaer ED, Lawand NB, Westlund KN, Willis WD (1996) Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J Neurophysiol 76:2661–2674

    PubMed  CAS  Google Scholar 

  5. Andrew D, Craig AD (2001) Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4:72–77

    Article  PubMed  CAS  Google Scholar 

  6. Andrew D, Krout KE, Craig AD (2003) Differentiation of lamina I spinomedullary and spinothalamic neurons in the cat. J Comp Neurol 458:257–271

    Article  PubMed  Google Scholar 

  7. Apkarian AV, Hodge CJ (1989) Primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. J Comp Neurol 288:447–473

    Article  PubMed  CAS  Google Scholar 

  8. Apkarian AV, Hodge CJ, (1989) Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288:474–492

    Article  PubMed  CAS  Google Scholar 

  9. Apkarian AV, Hodge CJ (1989) Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288:493–511

    Article  PubMed  CAS  Google Scholar 

  10. Arvidsson J, Thomander L (1984) An HRP study of the central course of sensory intermediate and vagal fibers in peripheral facial nerve branches in the cat. J Comp Neurol 223:35–45

    Article  PubMed  CAS  Google Scholar 

  11. Bajic D, Proudfit HK (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405:359–379

    Article  PubMed  CAS  Google Scholar 

  12. Barbaresi P, Spreafico R, Frassoni G, Rustioni A (1986) GABAergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Res 382:305–326

    Article  PubMed  CAS  Google Scholar 

  13. Basbaum AI, Clanton CH, Fields HL (1976) Opiate and stimulus-produced analgesia: functional anatomy of a medullospinal pathway. Proc Natl Acad Sci USA 73:4685–4688

    Article  PubMed  CAS  Google Scholar 

  14. Beck C (1976) Forlimb performance by squirrel monkeys (Saimiri sciureus) before and after dorsal column lesions. J Comp Physiol Psychol 90:353–362

    Article  PubMed  CAS  Google Scholar 

  15. Beckstead RM, Norgren R (1979) An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol 184:455–472

    Article  PubMed  CAS  Google Scholar 

  16. Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190:259–282

    Article  PubMed  CAS  Google Scholar 

  17. Bentivoglio M, Rustioni A (1986) Corticospinal neurons with branching axons to the dorsal column nuclei in the monkey. J Comp Neurol 253:260–276

    Article  PubMed  CAS  Google Scholar 

  18. Berkley KJ (1975) Different targets of different neurons in nucleus gracilis of the cat. J Comp Neurol 163:285–303

    Article  PubMed  CAS  Google Scholar 

  19. Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193:283–317

    Article  PubMed  CAS  Google Scholar 

  20. Berkley KJ, Hand PJ (1978) Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 180:253–264

    Article  PubMed  CAS  Google Scholar 

  21. Berkley KJ, Hubscher CH, Wall PD (1993) Neuronal responses to stimulation of the cervix, uterus, colon, and skin in the rat spinal cord. J Neurophysiol 69:545–556

    PubMed  CAS  Google Scholar 

  22. Berkley KJ, Blomqvist A, Pelt A, Flink R (1980) Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: an anatomical study using two different double-labeling techniques. Brain Res 202:273–290

    Article  PubMed  CAS  Google Scholar 

  23. Bernard JF, Huang GF, Besson JM (1992) Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 68:551–569

    PubMed  CAS  Google Scholar 

  24. Bester H, Menendez L, Besson JM, Bernard JF (1995) Spino(trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 73:568–585

    PubMed  CAS  Google Scholar 

  25. Bishop GH (1959) The relation between nerve fiber size and sensory modality: phylogenetic implications of the afferent innervation of the cortex. J Nerv Mental Dis 128:89–114

    CAS  Google Scholar 

  26. Blessing W (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 465–478

    Google Scholar 

  27. Blomqvist A, Ma W, Berkley KJ (1989) Spinal input to the parabrachial nucleus in the cat. Brain Res 480:29–36

    Article  PubMed  CAS  Google Scholar 

  28. Blomqvist A, Zhang ET, Craig AD (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123:601–619

    Article  PubMed  Google Scholar 

  29. Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186:343–369

    Article  PubMed  CAS  Google Scholar 

  30. Boivie J, Grant G, Albe-Fessard DL, Llevante A (1975) Evidence for a projection to the thalamus from the external cuneate nucleus of the monkey. Neurosci Lett 1:3–8

    Article  PubMed  CAS  Google Scholar 

  31. Braz JM, Nassar MA, Wood JN, Basbaum AI (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47:787–793

    Article  PubMed  CAS  Google Scholar 

  32. Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischek M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  33. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  34. Brooks JC, Nurmikko TJ, Bimson EE, Singh KD, Roberts N (2002) fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15:293–301

    Article  PubMed  Google Scholar 

  35. Brooks JCW, Zambreanu L, Godinez A, Craig AD, Tracey I (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27:201–209

    Article  PubMed  CAS  Google Scholar 

  36. Brown AG (1981) Organization in the spinal cord. The anatomy and physiology of identified neurones. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  37. Brown PB, Fuchs JL (1975) Somatotopic representation of hindlimb skin in cat dorsal horn. J Neurophysiol 38:1–9

    Article  PubMed  CAS  Google Scholar 

  38. Brown AG, Brown PB, Fyffe RE, Pubols LM (1983) Receptive field organization and response properties of spinal neurones with axons ascending the dorsal columns in the cat. J Physiol 337:575–588

    PubMed  CAS  Google Scholar 

  39. Burstein R, Wang JL, Elde RP, Giesler GJ (1990) Neurons in the sacral parasympathetic nucleus that project to the hypothalamus do not also project through the pelvic nerve. A double labeling study combining Fluoro-gold and cholera toxin B in the rat. Brain Res 506:159–165

    Article  PubMed  CAS  Google Scholar 

  40. Burstein R, Falkowsky O, Borsook D, Strassman A (1996) Distinct lateral and medial projections of the spinohypothalamic tract of the rat. J Comp Neurol 373:549–574

    Article  PubMed  CAS  Google Scholar 

  41. Burton H, Craig AD (1979) Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res 161:515–521

    Article  PubMed  CAS  Google Scholar 

  42. Burton H, Craig AD, Poulos DA, Molt JT (1979) Efferent projections from temperature sensitive recording loci within the marginal zone of the nucleus caudalis of the spinal trigeminal complex in the cat. J Comp Neurol 183:753–777

    Article  PubMed  CAS  Google Scholar 

  43. Carpenter MB, Stein BM, Shriver JE (1968) Central projections of spinal dorsal roots in the monkey. II. Lower thoracic, lumbosarcral and coccygeal dorsal roots. Am J Anat 123:75–118

    Article  PubMed  CAS  Google Scholar 

  44. Cheek MD, Rustioni A, Trevino DL (1975) Dorsal column nuclei projections to the cerebellar cortex in cats as revealed by the use of the retrograde transport of horseradish peroxidase. J Comp Neurol 164:31–46

    Article  PubMed  CAS  Google Scholar 

  45. Cheema SS, Rustioni A, Whitsel BL (1984) Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys. J Comp Neurol 225:276–290

    Article  PubMed  CAS  Google Scholar 

  46. Cheema S, Rustioni A, Whitsel BL (1985) Sensorimotor cortical projections to the primate cuneate nucleus. J Comp Neurol 240:196–211

    Article  PubMed  CAS  Google Scholar 

  47. Cliffer KD, Willis WD (1994) Distribution of the postsynaptic dorsal column projection in the cuneate nucleus of monkeys. J Comp Neurol 345:84–93

    Article  PubMed  CAS  Google Scholar 

  48. Cliffer KD, Burstein R, Giesler GJ (1991) Distributions of spinothalamic, spinohypothalamic, and spinoteleccephalic fibers revealed by antegrade transport of PHA-L in rats. J Neurosci 11:852–868

    PubMed  CAS  Google Scholar 

  49. Coq JO, Qi H, Collins CE, Kaas JH (2004) Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch). J Comp Neurol 476:363–387

    Article  PubMed  Google Scholar 

  50. Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    Article  PubMed  CAS  Google Scholar 

  51. Craig AD (2004) Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 477:119–148

    Article  PubMed  CAS  Google Scholar 

  52. Craig AD (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: Input to ventral posterior nuclei. J Comp Neurol 499:965–978

    Article  PubMed  Google Scholar 

  53. Craig AD, Kniffki KD (1985) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol 365:197–221

    PubMed  CAS  Google Scholar 

  54. Craig AD, Serrano LP (1994) Effects of systemic morphine on lamina I spinothalamic tract neurons in the cat. Brain Res 636:233–244

    Article  PubMed  CAS  Google Scholar 

  55. Craig AD, Blomqvist A (2002) Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates? J Pain 3:95–101

    Article  PubMed  CAS  Google Scholar 

  56. Craig AD, Zhang ET (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: Input to posterolateral thalamus. J Comp Neurol 499:953–964

    Article  PubMed  Google Scholar 

  57. Craig AD Jr, Linington AJ, Kniffki KD (1989) Cells of origin of spinothalamic tract projections to the medial and lateral thalamus in the cat. J Comp Neurol 289:568–585

    Article  PubMed  Google Scholar 

  58. Craig AD, Zhang ET, Blomqvist A (1999) A distinct thermoreceptive subregion of lamina I in nucleus caudalis of owl monkey. J Comp Neurol 404:221–234

    Article  PubMed  CAS  Google Scholar 

  59. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  PubMed  CAS  Google Scholar 

  60. Cusick CG, Gould HJ, 3rd (1990) Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys. J Comp Neurol 292:83–102

    Article  PubMed  CAS  Google Scholar 

  61. Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418:1–21

    Article  PubMed  CAS  Google Scholar 

  62. Disbrow EA, Hinkley LB, Roberts TP (2003) Ipsilateral representation of oral structures in human anterior parietal somatosensory cortex and integration of inputs across the midline. J Comp Neurol 467:487–495

    Article  PubMed  Google Scholar 

  63. Dykes RW (1983) Parallel processing of somatosensory information: a theory. Brain Res Rev 6:47–115

    Article  Google Scholar 

  64. Dykes RW, Craig AD (1998) Control of size and excitability of mechanosensory receptive fields in dorsal column nuclei by homolateral dorsal horn neurons. J Neurophysiol 80:120–129

    PubMed  CAS  Google Scholar 

  65. Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279

    Article  PubMed  Google Scholar 

  66. Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  67. Fields HL, Basbaum AI (1978) Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol 40:217–248

    Article  PubMed  CAS  Google Scholar 

  68. Florence SL, Wall JT, Kaas JH (1989) Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. J Comp Neurol 286:48–70

    Article  PubMed  CAS  Google Scholar 

  69. Florence SL, Wall JT, Kaas JH (1991) Central projections from the skin of the hand in squirrel monkeys. J Comp Neurol 311:563–578

    Article  PubMed  CAS  Google Scholar 

  70. Forss N, Raij TT, Seppa M, Hari R (2005) Common cortical network for first and second pain. Neuroimage 24:132–142

    Article  PubMed  Google Scholar 

  71. Friedman DP, Jones EG (1981) Thalamic input to areas 3a and 2 in monkeys. J Neurophysiol 45:59–85

    PubMed  CAS  Google Scholar 

  72. Ganchrow D (1978) Intratrigeminal and thalamic projections of nucleus caudalis in the squirrel monkey (Saimiri sciureus): a degeneration and autoradiographic study. J Comp Neurol 178:281–312

    Article  PubMed  CAS  Google Scholar 

  73. Giesler GJ, Yezierski RP, Gerhart KD, Willis WD (1981) Spinothalamic tract neurons that project to medial and/or thalamic nuclei; evidence for a physiologically novel population of spinal neurons. J Neurophysiol 46:1285–1308

    PubMed  Google Scholar 

  74. Gingold SI, Greenspan JD, Apkarian AV (1991) Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 308:467–490

    Article  PubMed  CAS  Google Scholar 

  75. Gordon G, Grant G (1982) Dorsolateral spinal afferents to some medullary sensory nuclei. An anatomical study in the cat. Wxp Brain Res 46:12–23

    CAS  Google Scholar 

  76. Gowers R (1886) Bemerkungen Über die anterolateral aufsteigende Degeneration im Rückenmark. Neurol Centralbl 5:97–99

    Google Scholar 

  77. Grant G (1993) Projection patterns of primary sensory neurons studied by transganglionic methods: somatotopy and target-related organization. Brain Res Bull 30:199–208

    Article  PubMed  CAS  Google Scholar 

  78. Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observerindependent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14:617–631

    Article  PubMed  CAS  Google Scholar 

  79. Grefkes C, Ritzl A, Zilles K, Fink GR (2004) Human medial intraparietal cortex subserves visuomotor coordinate transformation. Neuroimage 23:1494–1506

    Article  PubMed  Google Scholar 

  80. Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system. Elsevier, Amsterdam, pp 407–453

    Google Scholar 

  81. Guilbaud G, Berkley KJ, Benoist JM, Gautron M (1993) Responses of neurons in thalamic ventrobasal complex of rats to graded distension of uterus and vagina and to uterine suprafusion with bradykinin and prostaglandin F2 alpha. Brain Res 614:285–290

    Article  PubMed  CAS  Google Scholar 

  82. Haeberle H, Fujiwara M, Chuang J, Medina MM, Panditrao MV, Bechstedt S, Howard J, Lumpkin EA (2004) Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA 101:14503–14508

    Article  PubMed  CAS  Google Scholar 

  83. Han ZS, Zhang ET, Craig AD (1998) Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nat Neurosci 1:218–225

    Article  PubMed  CAS  Google Scholar 

  84. Hayakawa T, Zheng JQ, Seki M, Yajima Y (1998) Synaptology of the direct projections from the nucleus of the solitary tract to pharyngeal motoneurons in the nucleus ambiguus of the rat. J Comp Neurol 393:391–401

    Article  PubMed  CAS  Google Scholar 

  85. Hubscher CH, Berkley KJ (1994) Responses of neurons in caudal solitary nucleus of female rats to stimulation of vagina, cervix, uterine horn and colon. Brain Res 664:1–8

    Article  PubMed  CAS  Google Scholar 

  86. Ikeda M, Matsushita M, Tanami T (1982) Termination and cells of origin of the ascending intra-nuclear fibers in the spinal trigeminal nucleus of the cat. A study with the horseradish peroxidase technique. Neurosci Lett 31:215–220

    Article  PubMed  CAS  Google Scholar 

  87. Iwata K, Kamo H, Ogawa A, Tsuboi Y, Noma N, Mitsuhashi Y, Taira M, Koshikawa N, Kitagawa J (2005) Anterior cingulate cortical neuronal activity during perception of noxious thermal stimuli in monkeys. J Neurophysiol 94:1980–1991

    Article  PubMed  Google Scholar 

  88. Jasmin L, Burkey AR, Card JP, Basbaum AI (1997) Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat. J Neurosci 17:3751–3765

    PubMed  CAS  Google Scholar 

  89. Johansson H, Silfvenius H (1977) Axon-collateral activation by dorsal spinocerebellar tract fibres of group I relay cells of nucleus Z in the cat medulla oblongata. J Physiol 265:341–369

    PubMed  CAS  Google Scholar 

  90. Jones EG, Friedman DP (1982) Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48:521–544

    PubMed  CAS  Google Scholar 

  91. Kaas JH (2004) Somatosensory system. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1059–1092

    Google Scholar 

  92. Kaas JH, Nelson RJ, Sur M, Dykes RW, Merzenich MM (1984) The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J Comp Neurol 226:111–140

    Article  PubMed  CAS  Google Scholar 

  93. Kakigi R, Inui K, Tran DT, Qiu Y, Wang X, Watanabe S, Hoshiyama M (2004) Human brain processing and central mechanisms of pain as observed by electro-and magneto-encephalography. J Clin Med Assoc 67:377–386

    Google Scholar 

  94. Kalia M, Mesulam MM (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol 193:435–465

    Article  PubMed  CAS  Google Scholar 

  95. Kalia M, Mesulam MM (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193:467–508

    Article  PubMed  CAS  Google Scholar 

  96. Kobayashi M, Sasabe T, Takeda M, Kondo Y, Yoshikubo S, Imamura K, Onoe H, Sawada T, Watanabe Y (2002) Functional anatomy of chemical senses in the alert monkey revealed by positron emission tomography. Eur J Neurosci 16:975–980

    Article  PubMed  Google Scholar 

  97. Kobayakawa T, Wakita M, Saito S, Gotow N, Sakai N, Ogawa H (2005) Location of the primary gustatory area in humans and its properties, studied by magnetoencephalography. Chem Senses 30:1226–1227

    Article  Google Scholar 

  98. Koerber HR, Brown PB (1982) Somatotopic organization of hindlimb cutaneous nerve projections to cat dorsal horn. J Neurophysiol 48:481–489

    PubMed  CAS  Google Scholar 

  99. Krubitzer LA, Kaas JH (1992) The somatosensory thalamus of monkeys: cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 319:123–140

    Article  PubMed  CAS  Google Scholar 

  100. Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15:3821–3839

    PubMed  CAS  Google Scholar 

  101. Kunc Z (1964) Tractus spinalis nervi trigemini; fresh anatomic data and their significance for surgery. Publishing House of the Czechoslovak Academy of Sciences., Prague

    Google Scholar 

  102. Kuypers HJGM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1:9–14

    Article  CAS  PubMed  Google Scholar 

  103. Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59:299–316

    PubMed  CAS  Google Scholar 

  104. Lima D, Mendes-Ribeiro JA, Coimbra A (1991) The spino-latero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved. Neuroscience 45:137–152

    Article  PubMed  CAS  Google Scholar 

  105. Lloyd DPC (1943) Neuron patterns controlling transmission of ipsilatral hind limb reflexes in cat. J Neurophysiol 6:293–315

    Google Scholar 

  106. Ma W, Blomqvist A, Berkley KJ (1989) Spinodiencephalic relays through the parabrachial nucleus in the cat. Brain Res 480:27–50

    Google Scholar 

  107. Mason P (1999) Central mechanisms of pain modulation. Curr Opin Neurobiol 9:436–441

    Article  PubMed  CAS  Google Scholar 

  108. Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience 7:1439–1454

    Article  PubMed  CAS  Google Scholar 

  109. Mehler WR (1962) The anatomy of the so-called “pain tract” in man: an analysis of the course and distributionof the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW (eds) Basis research in paraplegia. Thomas, Springfield, pp 26–55

    Google Scholar 

  110. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979

    Article  PubMed  CAS  Google Scholar 

  111. Morest DK (1967) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130:277–300

    Article  PubMed  CAS  Google Scholar 

  112. Morgan C, Nadelhaft I, de Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201: 415–440

    Article  PubMed  CAS  Google Scholar 

  113. Mouton LJ, Klop E, Holstege G (2001) Lamina Iperiaqueductal gray (PAG) projections represent only a limited part of the total spinal and caudal medullary input to the PAG in the cat. Brain Res Bull 54:167–174

    Article  PubMed  CAS  Google Scholar 

  114. Nauta HJ, Hewitt E, Westlund KN, Willis WD (1997) Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. J Neurosurg 86:538–542

    Article  PubMed  CAS  Google Scholar 

  115. Newman HM, Stevens RT, Apkarian AV (1996) Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat. J Comp Neurol 365:640–658

    Article  PubMed  CAS  Google Scholar 

  116. Nomura S, Mizuno N (1982) Central distribution of afferent and efferent components of the glossopharyngeal nerve: an HRP study in the cat. Brain Res 236:1–13

    Article  PubMed  CAS  Google Scholar 

  117. Ogawa H, Wakita M, Hasegawa K, Kobayakawa T, Sakai N, Hirai T, Yamashita Y, Saito S (2005) Functional MRI detection of activation in the primary gustatory cortices in humans. Chem Senses 30:583–592

    Article  PubMed  CAS  Google Scholar 

  118. Olszewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92:401–413

    Article  PubMed  CAS  Google Scholar 

  119. Pan B, Castro-Lopes JM, Coimbra A (1999) Central afferent pathways conveying nociceptive input to the hypothalamic paraventricular nucleus as revealed by a combination of retrograde labeling and c-fos activation. J Comp Neurol 413:129–145

    Article  PubMed  CAS  Google Scholar 

  120. Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210

    Article  PubMed  CAS  Google Scholar 

  121. Panneton WM, Burton H (1982) Origin of ascending intratrigeminal pathways in the cat. Brain Res 236:463–470

    Article  PubMed  CAS  Google Scholar 

  122. Penfield W, Bodrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  123. Percheron G (2004) Thalamus. In: Paxinos G, May JK (eds) The human nervous system. Elsevier, Ammsterdam, pp 592–675

    Google Scholar 

  124. Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104

    PubMed  CAS  Google Scholar 

  125. Pritchard TC, Norgren R(2004) Gustatory system. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1171–1196

    Google Scholar 

  126. Pritchard TC, Hamilton RB, Norgren R (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165:101–117

    Article  PubMed  CAS  Google Scholar 

  127. Pritchard TC, Hamilton RB, Morse JR, Norgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    Article  PubMed  CAS  Google Scholar 

  128. Puskar Z, Polgar E, Todd AJ (2001) A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 102:167–176

    Article  PubMed  CAS  Google Scholar 

  129. Qi H-X, Kaas JH (2006) Organization of primary afferent projections to the gracile nucleus of the dorsal column system of primates. J Comp Neurol 499:183–217

    Article  PubMed  Google Scholar 

  130. Qiu Y, Noguchi Y, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi R (2005) Brain Processing of the Signals Ascending Through Unmyelinated C Fibers in Humans: An Event-Related Functional Magnetic Resonance Imaging Study. Cereb Cortex 16:1289–1295

    Article  PubMed  Google Scholar 

  131. Rausell E, Jones EG (1991) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225

    PubMed  CAS  Google Scholar 

  132. Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237

    PubMed  CAS  Google Scholar 

  133. Rausell E, Bae CS, Vinuela A, Huntley GW, Jones EG (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci 12:4088–4111

    PubMed  CAS  Google Scholar 

  134. Reinisch CM, Tschachler E (2005) The touch dome in human skin is supplied by different types of nerve fibers. Ann Neurol 58:88–95

    Article  PubMed  Google Scholar 

  135. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–351

    Article  PubMed  CAS  Google Scholar 

  136. Rhoton AL (1968) Afferent connections of the facial nerve. J Comp Neurol 133:89–100

    Article  PubMed  Google Scholar 

  137. Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13:308–317

    Article  PubMed  CAS  Google Scholar 

  138. Rustioni A, Sanyal S, Kuypers HG (1971) A histochemical study of the distribution of the trigeminal divisions in the substantia gelatinosa of the rat. Brain Res 32:45–52

    Article  PubMed  CAS  Google Scholar 

  139. Rustioni A, Hayes NL, O’Neill S (1979) Dorsal column nuclei and ascending spinal afferents in macaques. Brain 102:95–125

    Article  PubMed  CAS  Google Scholar 

  140. Scheibel ME, Scheibel AB (1968) Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res 9:32–58

    Article  PubMed  CAS  Google Scholar 

  141. Schnitzler A, Rüdiger JS, Freund HJ (2000) The somatosensory system. In: Toga AW, Mazziotta JC (eds) Brain mapping. The systems. Academic Press, San Diego, pp 291–329

    Google Scholar 

  142. Schouenborg J, Sjölund BH (1983) Activity evoked by A-and C-afferent fibers in rat dorsal horn neurons and its relation to a flexion reflex. J Neurophysiol 50:1108–1121

    PubMed  CAS  Google Scholar 

  143. Sewards TV, Sewards MA (2002) The medial pain system: neural representations of the motivational aspect of pain. Brain Res Bull 59:163–180

    Article  PubMed  Google Scholar 

  144. Shigenaga Y, Chen IC, Suemune S, Nishimori T, Nasution ID, Yoshida A, Sato H, Okamoto T, Sera M, Hosoi M (1986) Oral and facial representation within the medullary and upper cervical dorsal horns in the cat. J Comp Neurol 243:388–408

    Article  PubMed  CAS  Google Scholar 

  145. Shigenaga Y, Okamoto T, Nishimori T, Suemune S, Nasution ID, Chen IC, Tsuru K, Yoshida A, Tabuchi K, Hosoi M, et al. (1986) Oral and facial representation in the trigeminal principal and rostral spinal nuclei of the cat. J Comp Neurol 244:1–18

    Article  PubMed  CAS  Google Scholar 

  146. Shriver JE, Stein BM, Carpenter MB (1968) Central projections of spinal dorsal roots in the monkey. I. Cervical and upper thoracic dorsal roots. Am J Anat 123:27–74

    Article  PubMed  CAS  Google Scholar 

  147. Sie PG (1956) Localization of fibre systems within the white matter of the medulla oblongata and the cervical cord in man.Thesis Leiden Eduard Ijdo

    Google Scholar 

  148. Sjöqvist O (1938) Eine neue Operationsmethode bei Trigminusneuralgie: Durchschneidung des Tractus spinalis trigemini. Zentralbl Neurochir 2:274–281

    Google Scholar 

  149. Smith RL (1975) Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J Comp Neurol 163:347–376

    Article  PubMed  CAS  Google Scholar 

  150. Snider WD, McMahon SB (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–632

    Article  PubMed  CAS  Google Scholar 

  151. Stevens RT, Apkarian AV, Hodge CJ (1991) The location of spinothalamic axons within spinal cord white matter in cat and squirrel monkey. Somatosens Mot Res 8:97–102

    Article  PubMed  CAS  Google Scholar 

  152. Torvik A (1957) The spinal projection of the nucleus of the solitary tract. An experimental study in the cat. J Anat 91:314–322

    PubMed  CAS  Google Scholar 

  153. Torvik A (1979) The ascending fibers from the main trigeminal nucleus. An experimntal study in the cat. Am J Anat 100:1–16

    Article  Google Scholar 

  154. Truex RC, Taylor MJ, Smythe MQ, Gildenberg PL (1970) The lateral cervical nucleus of cat, dog and man. J Comp Neurol 139:93–104

    Article  PubMed  CAS  Google Scholar 

  155. Usunoff KG, Marani E, Schoen JH (1997) The trigeminal system in man. Adv Anat Embryol Cell Biol 136:1–126

    Google Scholar 

  156. Vierck CJ (1977) Absolute and differential sensitivities to touch stimuli after spinal cord lesions in monkeys. Brain Res 134:529–539

    Article  PubMed  Google Scholar 

  157. Vierck CJ, Cooper BY (1998) Cutaneous texture discrimination following transection of the dorsal spinal column in monkeys. Somatosens Mot Res 15:309–315

    Article  PubMed  Google Scholar 

  158. Vogt BA, Sikes RW (2000) The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res 122:223–235

    PubMed  CAS  Google Scholar 

  159. von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des ewachsenen Menschen. Springer, Berlin

    Google Scholar 

  160. Waite PME, Ashwell KWS (2004) Trigminal sensory system. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1093–1124

    Google Scholar 

  161. Waldeyer W (1888) Das Gorilla-Rückenmark. Abh Kön Akad Wiss Berlin

    Google Scholar 

  162. Wall PD, Noordenbos W (1977) Sensory functions which remain in man after complete transection of dorsal columns. Brain 100:641–653

    Article  PubMed  CAS  Google Scholar 

  163. Wiberg M, Westman J, Blomqvist A (1986) The projection to the mesencephalon from the sensory trigeminal nuclei. An anatomical study in the cat. Brain Res 399:51–68

    Article  PubMed  CAS  Google Scholar 

  164. Willis WD, Westlund KN (2004) Pain system. In: Paxinos G, May JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1125–1170

    Google Scholar 

  165. Willis WD Jr, Zhang X, Honda CN, Giesler GJ Jr (2001) Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 92:267–276

    Article  PubMed  Google Scholar 

  166. Willis WD, Xijing Z, Honda CN, Giesler GJ (2002) A crtitical review of the role of the proposed VMpo nucleus in pain. J Pain 2:79–94

    Article  Google Scholar 

  167. Xu J, Wall JT (1996) Cutaneous representations of the hand and other body parts in the cuneate nucleus of a primate, and some relationships in previously described cortical representations. Somatosens Mot Res 13:187–197

    Article  PubMed  CAS  Google Scholar 

  168. Zatore RJ, Jones-Gotman M (2000) Functional imaging of the chemical senses. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic Press, San Diego, pp 403–424

    Google Scholar 

  169. Zhang ET, Craig AD (1997) Morphology and distribution of spinothalamic lamina I neurons in the monkey. J Neurosci 17:3274–3284

    PubMed  CAS  Google Scholar 

  170. Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

(2008). General Sensory Systems and Taste. In: The Human Central Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34686-9_16

Download citation

Publish with us

Policies and ethics