Skip to main content

Telencephalon: Hippocampus and Related Structures

  • Chapter

Abstract

In this chapter the hippocampus and two related telencephalic structures, the limbic lobe and the precommissural septum, will be dealt with. The hippocampus, which develops from the medial pallium (Figs. 2.24 B, 2.25, 11.1), appears in the sixth week of gestation. In late embryonic stages this structure occupies a considerable part of the medial hemisphere wall (Fig. 12.1 A), but during further development it is more and more overshadowed by the expanding neopallium [80]. From the fourth month onward, the rostral parts of the hippocampal primordium undergo retrogressive changes and gradually become reduced to a narrow, band-like rudiment (Fig. 12.1 B,C). The morphologically caudal part of the hippocampal anlage follows the ventral curvature of the developing hemisphere and becomes incorporated in the temporal lobe. As development proceeds, this temporal part of the hippocampus rolls in on itself along a longitudinal groove, the hippocampal fissure [80].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbie AA (1940) Cortical lamination in the monotremata. J Comp Neurol 72:429–467

    Google Scholar 

  2. Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403

    PubMed  CAS  Google Scholar 

  3. Albert DJ, Walsh ML, Jonik RH (1993) Aggression in humans: what is its biological foundation? Neurosci Biobehav Rev 17:405–425

    PubMed  CAS  Google Scholar 

  4. Alksen JF, Blackstad TW, Walberg F, White Jr LE (1966) Electron microscopy of axons degeneration: a valuable tool in experimental neuroanatomy. Ergebn Anat Entwicklgesch 39:1–32

    Google Scholar 

  5. Allen GV, Hopkins DA (1989) Mamillary body in the rat: topography and synaptology of projections from the subicular complex, profrontal cortex, midbrain tegmentum. J Comp Neurol 286:311–336

    PubMed  CAS  Google Scholar 

  6. Alonso A, Köhler C (1984) A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. J Comp Neurol 225:327–343

    PubMed  CAS  Google Scholar 

  7. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914

    PubMed  CAS  Google Scholar 

  8. Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    PubMed  CAS  Google Scholar 

  9. Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59

    PubMed  CAS  Google Scholar 

  10. Amaral DG, Insausti R, Cowan WM (1983) Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263–277

    PubMed  CAS  Google Scholar 

  11. Amaral DG, Insausti R, Cowan WM (1984) The commissural connections of the monkey hippocampal formation. J Comp Neurol 224:307–336

    PubMed  CAS  Google Scholar 

  12. Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Progr Brain Res 83:1–11

    CAS  Google Scholar 

  13. Amaral DG, Dolorfo C, Alvarez-Royo P (1991) Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1:415–435

    PubMed  CAS  Google Scholar 

  14. Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13:222–238

    Google Scholar 

  15. Andy OJ, Stephan H (1968) The septum in the human brain. J Comp Neurol 133:383–410

    PubMed  CAS  Google Scholar 

  16. Aniksztejn L, Charton G, Ben Ari Y (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res 404:58–64

    PubMed  CAS  Google Scholar 

  17. Bailey P, Von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  18. Ballantine HT, Levy BS, Dagi T, Giriunas IB (1975) Cingulotomi for psychiatric illness: report of 13 years experience. In: Sweet WH, Obrador S, Martin-Rodrigues JG (eds) Neurosurgical treatment in psychiatry, pain and epilepsy. University Park Press, Baltimore, pp 333–353

    Google Scholar 

  19. Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–533

    PubMed  CAS  Google Scholar 

  20. Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571

    PubMed  CAS  Google Scholar 

  21. Beckstead RM (1978) Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidase. Brain Res 152:249–264

    PubMed  CAS  Google Scholar 

  22. Berger B, Esclapez M, Alvarez C, Meyer G, Catala M (2001) Human and monkey fetal brain development of the supramammillary-hippocampal projections: a system involved in the regulation of theta activity. J Comp Neurol 429:515–529

    PubMed  CAS  Google Scholar 

  23. Berk ML, Finkelstein JA (1981) Afferent projections to the preoptic area and hypothalamic regions in the rat brain. Neuroscience 6:1601–1624

    PubMed  CAS  Google Scholar 

  24. Berk ML, Finkelstein JA (1982) Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull 8:511–526

    PubMed  CAS  Google Scholar 

  25. Blackstad TW, Kjaerheim A (1961) Special axodendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol 117:133–159

    PubMed  CAS  Google Scholar 

  26. Blair HT, Cho J, Sharp PE (1998) Role of the lateral mammillary nucleus in the rat head direction circuit: a combined single unit recording and lesion study. Neuron 21:1387–1397

    PubMed  CAS  Google Scholar 

  27. Blasco-Ibanez JM, Freund TF (1995) Synaptic input of horizontal interneurons in stratum oriens of the hippocampal CA1 subfield: structural basis of feed-back activation. Eur J Neurosci 7:2170–2180

    PubMed  CAS  Google Scholar 

  28. Blatt GJ, Rosene DL (1998) Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392:92–114

    PubMed  CAS  Google Scholar 

  29. Braak H (1980) Architectomics of the human telencephalic cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Broca P (1878) Anatomie comparée des circonvolutions cerebrales: le grand lobe limbique et la scissure dans la serie des mammiferes. Rev Anthropol (Paris) 2:285–498

    Google Scholar 

  31. Brodai A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  32. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  33. Brodmann K (1914) Physiologie des Gehirns. In: Von Bruns P (ed) Neue Deutsche Chirurgie, vol 11. Enke, Stuttgart, pp 85–426

    Google Scholar 

  34. Buckmaster PS, Alonso A, Canfield DR, Amaral DG (2004) Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J Comp Neurol 470:317–329

    PubMed  Google Scholar 

  35. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    PubMed  Google Scholar 

  36. Cajal SR (1972) Histologie du système nerveus de l’homme et des vertébrés. Consejo Superior de Investigaciones Cientificas. Institute Ramon y Cajal, Madrid

    Google Scholar 

  37. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    PubMed  CAS  Google Scholar 

  38. Chandler JP, Crutcher HA (1983) The septohippocampal projection in the rat: an electron microscopic horseradish peroxidase study. Neuroscience 10:685–696

    PubMed  CAS  Google Scholar 

  39. Charness ME, De la Paz RL (1987) Mamillary body atrophy in Wernicke’s encephalopathy: antemortem identification using magnetic resonance imaging. Ann Neurol 22:595–600

    PubMed  CAS  Google Scholar 

  40. Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    PubMed  CAS  Google Scholar 

  41. Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182

    PubMed  CAS  Google Scholar 

  42. Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246:435–458

    PubMed  CAS  Google Scholar 

  43. Conejo NM, Gonzalez-Pardo H, Vallejo G, Arias JL (2004) Involvement of the mammillary bodies in spatial working memory revealed by cytochrome oxidase activity. Brain Res 1011:107–114

    PubMed  CAS  Google Scholar 

  44. Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J Comp Neurol 169:185–220

    PubMed  CAS  Google Scholar 

  45. Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–262

    PubMed  CAS  Google Scholar 

  46. Corkin S, Amaral DG, Gonzalez RG, Johnson KA, Hyman BT (1997) H.M.’s medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 17:3964–3979

    PubMed  CAS  Google Scholar 

  47. Cruce JAF (1977) An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644

    PubMed  CAS  Google Scholar 

  48. Crutcher HA, Madison R, Davis JN (1981) A study of the rat septohippocampal pathway using anterograde transport of horseradish peroxidase. Neuroscience 6:1961–1973

    PubMed  CAS  Google Scholar 

  49. Demeter S, Rosene DL, Van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 233:30–47

    PubMed  CAS  Google Scholar 

  50. Deuchars J, Thomson AM (1996) CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74:1009–1018

    PubMed  CAS  Google Scholar 

  51. DeVito JL (1980) Subcortical projections to the hippocampal formation in squirrel monkey (Saimiri sciureus). Brain Res Bull 5:285–289

    PubMed  CAS  Google Scholar 

  52. Ding SL, Van Hoesen G, Rockland KS (2000) Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510–530

    PubMed  CAS  Google Scholar 

  53. Domesick VB (1970) The fasciculus cinguli in the rat. Brain Res 20:19–32

    PubMed  CAS  Google Scholar 

  54. Domesick VB (1976) Projections of the nucleus of the diagonal band of Broca in the rat. Anat Rec 184:391–392

    Google Scholar 

  55. Dum RP, Strick PL (1993) Cingulate motor areas. In: Vogt BA, Gabriel M, Leichnetz GR (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 415–441

    Google Scholar 

  56. Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    PubMed  CAS  Google Scholar 

  57. Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35:1731–1741

    PubMed  CAS  Google Scholar 

  58. Finch DM, Babb TL (1980) Neurophysiology of the caudally directed hippocampal efferent system in the rat: projections to the subicular complex. Brain Res 197:11–26

    PubMed  CAS  Google Scholar 

  59. Finch DM, Nowlin NL, Babb TL (1983) Demonstration of axonal projections of neurons in the rat hippocampus and subiculum by intracellular injection of HRP. Brain Res 271:201–216

    PubMed  CAS  Google Scholar 

  60. Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421:172–188

    PubMed  CAS  Google Scholar 

  61. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    PubMed  CAS  Google Scholar 

  62. Friedman HR, Janas JD, Goldman-Rakic PS (2005) Enhancement of metabolic activity in the diencephalon of monkeys performing working memory tasks: a 2-deoxyglucose study in behaving rhesus monkeys. J Cogn Neurosci 2:18–31

    Google Scholar 

  63. Fukuda T, Kosaka T (2000) Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci 20:1519–1528

    PubMed  CAS  Google Scholar 

  64. Gaffan D, Gaffan EA (1991) Amnesia in man following transection of the fornix. A review. Brain 114:2611–2618

    PubMed  Google Scholar 

  65. Glees P, Cole J, Whitty CWM, Cairns H (1950) The effects of lesions in the cingular gyrus and adjacent areas in monkeys. J Neurol Neurosurg Psychiatry 13:178–190

    PubMed  CAS  Google Scholar 

  66. Gloor P, Salanova V, Olivier A, Quesney LF (1993) The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. Brain 116:1249–1273

    PubMed  Google Scholar 

  67. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743

    PubMed  CAS  Google Scholar 

  68. Grasby PM, Frith CD, Friston KJ et al (1993) Functional mapping of brain areas implicated in auditory-verbal memory function. Brain 116:1–20

    PubMed  Google Scholar 

  69. Gray PA (1924) The cortical lamination pattern of the opossum, Didelphis virginiana. J Comp Neurol 37:221–263

    Google Scholar 

  70. Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7: 977–995

    PubMed  CAS  Google Scholar 

  71. Habets AMMC, Lopes da Silva FH, De Quartel FW (1980) Autoradiography of the olfactory-hippocampal pathway in the cat with special reference to the perforant path. Exp Brain Res 38:257–265

    PubMed  CAS  Google Scholar 

  72. Haglund L, Swanson LW, Köhler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185

    PubMed  CAS  Google Scholar 

  73. Hamlyn LH (1962) The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J Anat 96:112–120

    PubMed  CAS  Google Scholar 

  74. Harris E, Witter MP, Weinstein G, Stewart M (2001) Intrinsic connectivity of the rat subiculum: I. Dendritic morphology and patterns of axonal arborization by pyramidal neurons. J Comp Neurol 435:490–505

    PubMed  CAS  Google Scholar 

  75. Hassiotis M, Paxinos G, Ashwell KWS (2004) Cyto-and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 475:493–517

    PubMed  Google Scholar 

  76. Hassler R, Riechert T (1957) Ueber einen Fall von doppelseitiger Forniocotomie bei sogenannter temporaler Epilepsie. Acta Neurochir (Wien) 5:330–340

    CAS  Google Scholar 

  77. Hatanaka N, Tokuno H, Hamada I et al (2003) Thalamocortical and intracortical connections of monkey cingulate motor areas. J Comp Neurol 462: 121–138

    PubMed  Google Scholar 

  78. Hayakawa T, Zyo K (1985) Afferent connections of Gudden’s tegmental nuclei in the rabbit. J Comp Neurol 235:169–181

    PubMed  CAS  Google Scholar 

  79. Heimer L (1968) Synaptic distribution of centripetal and centrifugal nerve fibers in the olfactory system of the rat. An experimental anatomical study. J Anat 103:413–432

    PubMed  CAS  Google Scholar 

  80. Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610

    PubMed  CAS  Google Scholar 

  81. Hines M (1922) Studies in the growth and differentiation of the telencephalon in man. The Fissura hippocampi. J Comp Neurol 34:79–171

    Google Scholar 

  82. Hines M (1929) The brain of Or nithorhynchus anatinus (Monotremata). Phil Trans R Soc Lond B 217:155–187

    Google Scholar 

  83. Hirose S, Ino T, Takada M et al (1992) Topographic projections from the subiculum to the limbic regions of the medial frontal cortex in the cat. Neurosci Lett 139:61–64

    PubMed  CAS  Google Scholar 

  84. Hjorth-Simonsen A (1971) Hippocampal efferents to the ipsilateral entorhinal area: an experimental study in the rat. J Comp Neurol 142:417–438

    PubMed  CAS  Google Scholar 

  85. Hjorth-Simonsen A (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J Comp Neurol 146:219–232

    PubMed  CAS  Google Scholar 

  86. Humphrey T (1965) The development of the human hippocampal formation correlated with some aspects of its phylogenetic history. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 104–116

    Google Scholar 

  87. Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20:472–481

    PubMed  CAS  Google Scholar 

  88. Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 871–914

    Google Scholar 

  89. Insausti R, Munoz M (2001) Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur J Neurosci 14:435–451

    PubMed  CAS  Google Scholar 

  90. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    PubMed  CAS  Google Scholar 

  91. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol 264:396–408

    PubMed  CAS  Google Scholar 

  92. Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355: 171–198

    PubMed  CAS  Google Scholar 

  93. Irle E, Markowitsch HJ (1982) Widespread cortical projections of the hippocampal formation in the cat. Neuroscience 7:2637–2647

    PubMed  CAS  Google Scholar 

  94. Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623

    PubMed  CAS  Google Scholar 

  95. Jakab RL, Leranth C (1995) Septum. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 405–422

    Google Scholar 

  96. Johnston D, Amaral DG (2004) Hippocampus. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, Oxford, pp 455–498

    Google Scholar 

  97. Johnston JB (1913) The morphology of the septum, hippocampus, and palliai commissures in reptiles and mammals. J Comp Neurol 23:371–478

    Google Scholar 

  98. Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–824

    PubMed  CAS  Google Scholar 

  99. Jongen-Rêlo AL, Pitkänen A, Amaral DG (1999) Distribution of GABAergic cells and fibers in the hippocampal formation of the macaque monkey: an immunohistochemical and in situ hybridization study. J Comp Neurol 408:237–271

    PubMed  Google Scholar 

  100. Kemper TL (1976) The organization and connections of the human septum and septal area. Anat Rec 184:444

    Google Scholar 

  101. Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187: 660–662

    PubMed  CAS  Google Scholar 

  102. Knowles WD, Schwartzkroin PA (1981) Axonal ramifications of hippocampal Cal pyramidal cells. J Neurosci 1:1236–1241

    PubMed  CAS  Google Scholar 

  103. Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48–79

    PubMed  Google Scholar 

  104. Köhler C (1985) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504–522

    PubMed  Google Scholar 

  105. Köhler C, Shipley MT, Srebro B, Harkmark W (1978) Some retrohippocampal afferents to the entorhinal cortex. Cells of origin as studied by the HRP method in the rat and mouse. Neurosci Lett 10:115–120

    Google Scholar 

  106. Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immun ore activity project to the hippocampal region in the rat brain. Anat Embryol (Berl) 169: 41–44

    Google Scholar 

  107. Kopelman MD (1995) The Korsakoff syndrome. Br J Psychiatry 166:154–173

    PubMed  CAS  Google Scholar 

  108. Kosel KC, Van Hoesen GW, Rosene DL (1982) Nonhippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213

    PubMed  CAS  Google Scholar 

  109. Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M (1979) Origin of the fornix system in the squirrel monkey. Brain Res 160:401–411

    PubMed  CAS  Google Scholar 

  110. Krettek JE, Price JL (1974) Projections from the amygdala to the perirhinal and entorhinal cortices and the subiculum. Brain Res 71:150–154

    PubMed  CAS  Google Scholar 

  111. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722

    PubMed  CAS  Google Scholar 

  112. Krettek JE, Price JL (1977) Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J Comp Neurol 172:723–752

    PubMed  CAS  Google Scholar 

  113. Krimer LS, Hyde TM, Herman MM, Saunders RC (1997) The entorhinal cortex: an examination of cyto-and myeloarchitectonic organization in humans. Cereb Cortex 7:722–731

    PubMed  CAS  Google Scholar 

  114. Kunkel DD, Lacaille JC, Schwartzkroin PA (1988) Ultrastructure of stratum lacunosum-moleculare interneurons of hippocampal CA1 region. Synapse 2:382–394

    PubMed  CAS  Google Scholar 

  115. Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  116. L’vovich AI (2001) Descending pathways of the frontal lobe cortex to nuclei of the hypothalamic mamillary bodies in craniocerebral trauma in humans. Neurosci Behav Physiol 31:371–374

    CAS  Google Scholar 

  117. Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology. J Neurosci 8:1400–1410

    PubMed  CAS  Google Scholar 

  118. Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 8:1411–1424

    PubMed  CAS  Google Scholar 

  119. Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7:1979–1993

    PubMed  CAS  Google Scholar 

  120. Lacaille JC, Kunkel DD, Schwartzkroin PA (1989) Electrophysiological and morphological characterization of hippocampal interneurons. In: Chan-Palay V, Köhler C (eds) The hippocampus: new vistas. Liss, New York, pp 287–305 (Neurology and neurobiology, vol 52)

    Google Scholar 

  121. Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 123–144

    Google Scholar 

  122. Lavenex P, Suzuki WA, Amaral DG (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447:394–420

    PubMed  Google Scholar 

  123. Leichnetz GR (2001) Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat Rec 263:215–236

    PubMed  CAS  Google Scholar 

  124. Lim C, Blume HW, Madsen JR, Saper CB (1997) Connections of the hippocampal formation in humans: I. The mossy fiber pathway. J Comp Neurol 385:325–351

    PubMed  CAS  Google Scholar 

  125. Lim C, Mufson EJ, Kordower JH et al (1997) Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. J Comp Neurol 385:352–371

    PubMed  CAS  Google Scholar 

  126. Loo YT (1930) The forebrain of the opossum, Didelphis virginiana. I. Gross anatomy. J Comp Neurol 51:1–64

    Google Scholar 

  127. Loo YT (1931) The forebrain of the opossum, Didelphis virginiana. J Comp Neurol 52:1–48

    Google Scholar 

  128. Lopes da Silva FH, Groenewegen HJ, Holsheimer J et al (1985) The hippocampus as a set of partially overlapping segments with a topographically organized system of inputs and outputs: the entorhinal cortex as a sensory gate, the medial septum as a gain-setting system and the ventral striatum as a motor interface. In: Buzsaki G, VanderWolf CH (eds) Electrical activity of archicortex. Academiai Kiado, Budapest, pp 83–106

    Google Scholar 

  129. Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AH (1990) Anatomic organization and physiology of the limbic cortex. Physiol Rev 70: 453–511

    PubMed  CAS  Google Scholar 

  130. Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–439

    Google Scholar 

  131. Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  132. Mabuchi M (1967) Corticofugal projections to the subthalamic nucleus, the red nucleus and the adjacent areas in the monkey. Proc Jpn Acad 43:818

    Google Scholar 

  133. Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications — making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    PubMed  CAS  Google Scholar 

  134. Maccaferri G, McBain CJ (1995) Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. Neuron 15:137–145

    PubMed  CAS  Google Scholar 

  135. Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524:91–116

    PubMed  CAS  Google Scholar 

  136. MacVicar BA, Dudek FE (1980) Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res 184:220–223

    PubMed  CAS  Google Scholar 

  137. Maddock RJ, Garrett AS, Buonocore MH (2001) Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104:667–676

    PubMed  CAS  Google Scholar 

  138. Mair WG, Warrington EK, Weiskrantz L (1979) Memory disorder in Korsakoff’s psychosis: a neuropathological and neuropsychological investigation of two cases. Brain 102:749–783

    PubMed  CAS  Google Scholar 

  139. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23

    PubMed  CAS  Google Scholar 

  140. McBain CJ, DiChiara TJ, Kauer JA (1994) Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J Neurosci 14:4433–4445

    PubMed  CAS  Google Scholar 

  141. Meibach RG, Siegel A (1975) The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508–512

    PubMed  CAS  Google Scholar 

  142. Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res 119:1–20

    PubMed  CAS  Google Scholar 

  143. Meibach RC, Siegel A (1977) Efferent connections of the hippocampal formation of the rat. Brain Res 124:197–224

    PubMed  CAS  Google Scholar 

  144. Meibach RC, Siegel A (1977) Thalamic projections of the hippocampal formation: evidence for an alternate pathway involving the internal capsule. Brain Res 134:1–12

    PubMed  CAS  Google Scholar 

  145. Meibach RC, Siegel A (1977) Subicular projections to the posterior cingulate cortex in rats. Exp Neurol 57:264–274

    PubMed  CAS  Google Scholar 

  146. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature. Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  147. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    PubMed  CAS  Google Scholar 

  148. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    PubMed  CAS  Google Scholar 

  149. Meyer G, MacElhaney M, Martin W, MacGraw CP (1973) Stereotaxic cingulotomy with results of acute stimulation and serial psychological testing. In: Laitinen LV, Livingston KE (eds) Surgical approaches in psychiatry. Medical and Technical Publications, Lancaster, pp 39–58

    Google Scholar 

  150. Mitchell SJ, Rawlins JNP, Steward O, Olton DS (1982) Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2:292–302

    PubMed  CAS  Google Scholar 

  151. Mogenson GJ (1984) Limbic-motor integration — with emphasis on initiation of exploratory and goal-directed locomotion. In: Bandler R (ed) Modulation of sensorimotor activity during alterations in behavioral states. Liss, New York, pp 121–137

    Google Scholar 

  152. Mogenson GJ, Swanson LW, Wu M (1984) Evidence that projections from substantia innominata at zona incerta mesencephalic locomotor region contribute to locomotor activity. Brain Res 334:65–76

    Google Scholar 

  153. Morest DK (1961) Connexions of the dorsal tegmental nucleus in rat and rabbit. J Anat 95:229–246

    PubMed  CAS  Google Scholar 

  154. Nauta WJH (1964) Some efferent connections of the prefrontal region in the monkey. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 397–409

    Google Scholar 

  155. Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  156. Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH et al (eds) Reticular formation of the brain. Little Brown, Toronto, pp 3–31

    Google Scholar 

  157. Nieuwenhuys R (1998) Telencephalon. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol III. Springer, Berlin Heidelberg New York, pp 1871–2008

    Google Scholar 

  158. Nitsch R, Leranth C (1993) Calretinin immunoreactivity in the monkey hippocampal formation. II. Intrinsic GABAergic and hypothalamic non-GABAergic systems: an experimental tracing and co-existence study. Neuroscience 55:797–812

    PubMed  CAS  Google Scholar 

  159. O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley, New York

    Google Scholar 

  160. Pandya DN, Seltzer B (1982) Association areas of the cerebral cortex. Trends Neurosci 5:386–390

    Google Scholar 

  161. Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Association and auditory cortices. Plenum, New York, pp 3–61

    Google Scholar 

  162. Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. Prog Brain Res 85:63–94

    PubMed  CAS  Google Scholar 

  163. Pandya DN, Van Hoesen GW, Domesick VB (1973) A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 61:369–373

    PubMed  CAS  Google Scholar 

  164. Pandya DN, Van Hoesen GW, Mesulam M-M (1981) Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330

    PubMed  CAS  Google Scholar 

  165. Panula P, Revuelta AV, Cheney PL, Wu J-Y, Costa E (1984) An immunohistochemical study on the location of GABAergic neurons in rat septum. J Comp Neurol 222:69–80

    PubMed  CAS  Google Scholar 

  166. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Google Scholar 

  167. Parra P, Gulyás AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20:983–993

    PubMed  CAS  Google Scholar 

  168. Pasquier DA, Reinoso-Suarez F (1978) The topographic organization of hypothalamic and brain stem projections to the hippocampus. Brain Res Bull 3:373–389

    PubMed  CAS  Google Scholar 

  169. Pitkänen A, Kelly JL, Amaral DG (2002) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus 12:186–205

    PubMed  Google Scholar 

  170. Pritchard TC, Hamilton RB, Morse JR, Morgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    PubMed  CAS  Google Scholar 

  171. Raisman G (1966) An experimental analysis of the efferent projection of the hippocampus. Brain 88:963–996

    Google Scholar 

  172. Rempel-Clower NL, Zola SM, Squire LR, Amaral DG (1996) Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci 16:5233–5255

    PubMed  CAS  Google Scholar 

  173. Ribak CE, Seress L (1983) Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J Neurocytol 12:577–597

    PubMed  CAS  Google Scholar 

  174. Ricardo JA (1983) Hypothalamic pathways involved in metabolic regulatory functions, as identified by tracktracing methods. Adv Metab Dis 10:1–30

    CAS  Google Scholar 

  175. Riley JN, Moore RY (1981) Diencephalic and brainstem afferents to the hippocampal formation of the rat. Brain Res Bull 6:437–444

    PubMed  CAS  Google Scholar 

  176. Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Brain Res Rev 24:115–195

    PubMed  CAS  Google Scholar 

  177. Robertson RT, Kaitz SS (1981) Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol 195:501–525

    PubMed  CAS  Google Scholar 

  178. Room P, Groenewegen HJ (1986) Connections of the parahippocampal cortex. I. Cortical afferents. J Comp Neurol 251:415–450

    PubMed  CAS  Google Scholar 

  179. Room P, Groenewegen HJ (1986) Connections of the parahippocampal cortex in the cat. II. Subcortical afferents. J Comp Neurol 251:451–473

    PubMed  CAS  Google Scholar 

  180. Room P, Groenewegen HJ, Lohman AHM (1984) Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat. Exp Brain Res 56:488–496

    PubMed  CAS  Google Scholar 

  181. Room P, Russchen FT, Groenewegen HJ, Lohman AHM (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242:40–55

    PubMed  CAS  Google Scholar 

  182. Rose M (1926) Der Allocortex bei Tier und Mensch. J Psychol Neurol 34:1–99

    Google Scholar 

  183. Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Grosshirnrinde. In: Bumke O, Foerster O (eds) Allgemeine Neurologie I, Anatomie. Springer, Berlin, pp 588–778 (Handbuch der Neurologie, vol I)

    Google Scholar 

  184. Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of the cerebral cortex and amygdala in the rhesus monkey. Science 198:315–317

    PubMed  CAS  Google Scholar 

  185. Russell SH, Small CJ, Dakin CL et al (2001) The central effects of orexin-A in the hypothalamicpituitary-adrenal axis in vivo and in vitro in male rats. J Neuroendocrinol 13:561–566

    PubMed  CAS  Google Scholar 

  186. Santin LJ, Rubio S, Begega A, Arias JL (1999) Effects of mammillary body lesions on spatial reference and working memory tasks. Behav Brain Res 102:137–150

    PubMed  CAS  Google Scholar 

  187. Santin LJ, Aguirre JA, Rubio S et al (2003) c-Fos expression in supramammillary and medial mammillary nuclei following spatial reference and working memory tasks. Physiol Behav 78:733–739

    PubMed  CAS  Google Scholar 

  188. Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183:689–706

    PubMed  CAS  Google Scholar 

  189. Saunders RC, Rosene DL (1988) A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices. J Comp Neurol 271:153–184

    PubMed  CAS  Google Scholar 

  190. Saunders RC, Rosene DL, Van Hoesen GW (1988) Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J Comp Neurol 271:185–207

    PubMed  CAS  Google Scholar 

  191. Scalia F (1966) Some olfactory pathways in the rabbit brain. J Comp Neurol 126:285–310

    PubMed  CAS  Google Scholar 

  192. Schwartzkroin PA (1986) Regulation of excitability in hippocampal neurons. In: Isaacson RL, Pribram KH (eds) The hippocampus. Plenum, New York, pp 113–136

    Google Scholar 

  193. Schwartzkroin PA, Kunkel DD (1985) Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus. J Comp Neurol 232:205–218

    PubMed  CAS  Google Scholar 

  194. Schwartzkroin PA, Mathers LH (1978) Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res 157:1–10

    PubMed  CAS  Google Scholar 

  195. Schwartzkroin PA, Scharfman HE, Sloviter RS (1990) Similarities in circuitry between Ammon’s horn and dentate gyrus: local interactions and parallel processing. Progr Brain Res 83/86:269–286

    Google Scholar 

  196. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiat 20:11–21

    PubMed  CAS  Google Scholar 

  197. Seltzer B, Van Hoesen GW (1979) A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res 179:157–161

    PubMed  CAS  Google Scholar 

  198. Seress L, Mrzljak L (1987) Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Res 405:169–174

    PubMed  CAS  Google Scholar 

  199. Sewards TV, Sewards MA (2002) The medial pain system. Brain Res Bull 59:163–180

    PubMed  Google Scholar 

  200. Shibata H (1989) Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436–452

    PubMed  CAS  Google Scholar 

  201. Shipley MT (1974) Presubiculum afferents to the entorhinal area and the Papez circuit. Brain Res 67:162–168

    PubMed  CAS  Google Scholar 

  202. Shipley MT (1975) The topographical and laminar organization of the presubiculum’s projection to the ipsi-and contralateral entorhinal cortex in the guinea pig. J Comp Neurol 160:127–145

    PubMed  CAS  Google Scholar 

  203. Shipley MT, Sörensen KE (1975) On the laminar organization of the anterior thalamus projections to the presubiculum in the guinea pig. Brain Res 86:473–477

    PubMed  CAS  Google Scholar 

  204. Somogyi P, Nunzi MG, Gorio A, Smith AD (1983) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259:137–142

    PubMed  CAS  Google Scholar 

  205. Somogyi P, Freund TF, Hodgson AJ et al (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149

    PubMed  CAS  Google Scholar 

  206. Sørensen KE (1985) Projections of the entorhinal area to the striatum, nucleus accumbens, and cerebral cortex in the guinea pig. J Comp Neurol 238:308–322

    PubMed  Google Scholar 

  207. Sørensen KE, Shipley MT (1979) Projections from the subiculum to the deep layers of the ipsilateral presubicular and entorhinal cortices in the guinea pig. J Comp Neurol 188:313–334

    PubMed  Google Scholar 

  208. Sørensen KE, Witter MP (1983) Entorhinal efferents reach the caudato-putamen. Neurosci Lett 35:259–264

    PubMed  Google Scholar 

  209. Soriano E, Frotscher M (1993) Spiny nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. J Comp Neurol 333:435–448

    PubMed  CAS  Google Scholar 

  210. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    PubMed  CAS  Google Scholar 

  211. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    PubMed  CAS  Google Scholar 

  212. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    PubMed  CAS  Google Scholar 

  213. Stackman RW, Taube JS (1998) Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci 18:9020–9037

    PubMed  CAS  Google Scholar 

  214. Stengaard-Pedersen K, Fredens K, Larsson LI (1981) Enkephalin and zinc in the hippocampal mossy fiber system. Brain Res 212:230–233

    PubMed  CAS  Google Scholar 

  215. Stephan H (1975) Allocortex. Springer, Berlin Heidelberg New York (Handbuch der mikroskopischen Anatomie des Menschen, Band 4, Teil 9)

    Google Scholar 

  216. Steriade M, Jones EG, McCormick DA (1997) Organisation and function. Elsevier, Amsterdam (Thalamus, vol I)

    Google Scholar 

  217. Storm-Mathisen J, Opsahl MW (1978) Aspartate and/or glutamate may be transmitters in hippocampal efferents to septum and hypothalamus. Neurosci Lett 9:65–70

    CAS  Google Scholar 

  218. Suzuki WA (1996) The anatomy, physiology and functions of the perirhinal cortex. Curr Opin Neurobiol 6:179–186

    PubMed  CAS  Google Scholar 

  219. Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14: 1856–1877

    PubMed  CAS  Google Scholar 

  220. Suzuki WA, Amaral DG (2003) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906

    PubMed  CAS  Google Scholar 

  221. Suzuki WA, Amaral DG (2003) Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91

    PubMed  Google Scholar 

  222. Swanson LW (1979) The hippocampus — new anatomical insights. Trends Neurosci 2:9–12

    Google Scholar 

  223. Swanson LW (1982) Normal hippocampal circuitry. Neurosci Res Prog Bull 20:624–637

    Google Scholar 

  224. Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    PubMed  CAS  Google Scholar 

  225. Swanson LW, Cowan WM (1975) Hippocampohypothalamic connections: origin in subicular cortex, not Ammon’s horn. Science 189:303–304

    PubMed  CAS  Google Scholar 

  226. Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84

    PubMed  CAS  Google Scholar 

  227. Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655

    PubMed  CAS  Google Scholar 

  228. Swanson LW, Köhler C, Björklund A (1987) The limbic region. I. The septohippocampal system. In: Björklund A, Hökfelt T, Swanson LW (eds) Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 125–277 (Handbook of chemical neuroan atomy, vol 5)

    Google Scholar 

  229. Sweet WH, Talland GA, Ervin FR (1959) Loss of recent memory following section of fornix. Trans Am Neurol Assoc 84:76–82

    PubMed  CAS  Google Scholar 

  230. Tamamaki N, Nojyo Y (1995) Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. J Comp Neurol 353:379–390

    PubMed  CAS  Google Scholar 

  231. Tamamaki N, Abe K, Nojyo Y (1987) Columnar organization in the subiculum formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus. Brain Res 412:156–160

    PubMed  CAS  Google Scholar 

  232. Tanaka Y, Miyazawa Y, Akaoka F, Yamada T (1997) Amnesia following damage to the mammillary bodies. Neurology 48:160–165

    PubMed  CAS  Google Scholar 

  233. Tanji J, Shima K, Matsuzaka Y (2002) Reward-based planning of motor selection in the rostral cingulate motor area. Adv Exp Med Biol 508:417–423

    PubMed  Google Scholar 

  234. Ter Horst GJ, Luiten PGM (1986) The projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res Bull 16:231–248

    PubMed  Google Scholar 

  235. Tilney F (1939) The hippocampus and its relations to the corpus callosum. J Nerv Ment Dis 89:433–513

    Google Scholar 

  236. Turner BH, Mishkin M, Knapp M (1980) Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol 191:515–543

    PubMed  CAS  Google Scholar 

  237. Umbriaco D, Garcia S, Beaulieu C, Descarries L (1995) Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus 5:605–620

    PubMed  CAS  Google Scholar 

  238. Van Daal JH, Zanderink HE, Jenks BG, Van Abeelen JH (1989) Distribution of dynorphin B and methionine-enkephalin in the mouse hippocampus: influence of genotype. Neurosci Lett 97:241–244

    PubMed  Google Scholar 

  239. Van Groen T, Lopes da Silva FH (1985) Septotemporal distribution of entorhinal projections to the hippocampus in the cat: electrophysiological evidence. J Comp Neurol 238:1–10

    PubMed  Google Scholar 

  240. Van Groen T, Lopes da Silva FH (1986) The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat. II. An electrophysiological study. J Comp Neurol 251:111–120

    PubMed  Google Scholar 

  241. Van Groen T, Van Haren FJ, Witter MP, Groenewegen HJ (1986) The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat. I. A neuroanatomical tracing study. J Comp Neurol 250:485–497

    PubMed  Google Scholar 

  242. Van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Google Scholar 

  243. Van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res 83:445–457

    PubMed  Google Scholar 

  244. Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal area (area 28) and perirhinal area (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24

    PubMed  Google Scholar 

  245. Van Hoesen GW, Pandya DN, Butters M (1975) Some connections of the entorhinal area (area 28) and perirhinal area (area 35) cortices of the rhesus monkey. II. Frontal afferents. Brain Res 95:25–38

    PubMed  Google Scholar 

  246. Van Hoesen GW, Rosene DL, Mesulam M-M (1979) Subicular input from temporal cortex in the rhesus monkey. Science 205:608–610

    PubMed  Google Scholar 

  247. Van Hoesen GW, Morecraft RJ, Vogt BA (1993) Connections of the monkey cingulate cortex. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 249–284

    Google Scholar 

  248. Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R (2000) The parahippocampal gyrus in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates. Ann NY Acad Sci 911:254–274

    PubMed  Google Scholar 

  249. Vann SD, Aggleton JP (2003) Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies or mammillothalamic tract. J Neurosci 23:3506–3514

    PubMed  CAS  Google Scholar 

  250. Victor M, Adams RD, Collins GH (1971) The Wernicke-Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with postmortem examinations. Contemp Neurol Ser 7:1–206

    PubMed  CAS  Google Scholar 

  251. Victor M, Adams RD, Collins GH (1989) The Wernicke-Korsakoff syndrome. Davis, Philadelphia

    Google Scholar 

  252. Vincent SR, McGeer EG (1982) A substance-P projection to the hippocampus. Brain Res 215:349–351

    Google Scholar 

  253. Vogt BA (1993) Structural organization of cingulate cortex: areas, neurons, and somatodendritic transmitter receptors. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 19–70

    Google Scholar 

  254. Vogt BA, Sikes RW (2000) The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Progr Brain Res 122: 223–235

    CAS  Google Scholar 

  255. Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey. I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    PubMed  CAS  Google Scholar 

  256. Vogt BA, Vogt LJ, Perl DP, Hof PR (2001) Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438:353–376

    PubMed  CAS  Google Scholar 

  257. Vogt BA, Hof PR, Vogt LJ (2004) Cingulate gyrus. In: Paxinos G (ed) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 915–949

    Google Scholar 

  258. Von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana

    Google Scholar 

  259. Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin

    Google Scholar 

  260. Wainer BH, Levey AI, Rye DB, Mesulam MM, Mufson EJ (1985) Cholinergic and non-cholinergic septohippocampal pathways. Neurosci Lett 54:45–52

    PubMed  CAS  Google Scholar 

  261. Walaas I (1983) The hippocampus. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 337–358

    Google Scholar 

  262. Wilson DH, Chang AE (1974) Bilateral anterior cingulectomy for the relief of intractable pain. Report of 23 patients. Confin Neurol 36:61–68

    PubMed  CAS  Google Scholar 

  263. Wiltgen BJ, Brown RAM, Talton LE, Silva AJ (2004) New circuits for old memories: the role of the neocortex in consolidation. Neuron 44:101–108

    PubMed  CAS  Google Scholar 

  264. Witter MP, Amaral DG (1991)Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437–459

    PubMed  CAS  Google Scholar 

  265. Witter MP, Groenewegen HJ (1986) Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J Comp Neurol 252:1–31

    PubMed  CAS  Google Scholar 

  266. Witter MP, Room P, Groenewegen HJ, Lohman AHM (1986) Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; Comments on input/output connections with the hippocampus. J Comp Neurol 252:78–94

    PubMed  CAS  Google Scholar 

  267. Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Progr Neurobiol 33:161–253

    CAS  Google Scholar 

  268. Woolsey RM, Nelson JS (1975) Asymptomatic destruction of the fornix in man. Arch Neurol 32:566–568

    PubMed  CAS  Google Scholar 

  269. Wouterlood FG, Van Haeften T, Eijkhoudt M et al (2004) Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat. Brain Res 1013:1–12

    PubMed  CAS  Google Scholar 

  270. Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476

    PubMed  CAS  Google Scholar 

  271. Xiang JZ, Brown MW (2004) Neuronal responses related to long-term recognition memory processes in prefrontal cortex. Neuron 42:817–829

    PubMed  CAS  Google Scholar 

  272. Yanagihara M, Ono K, Niimi K (1985) Thalamic projections to the hippocampal formation in the cat. Neurosci Lett 61:31–35

    PubMed  CAS  Google Scholar 

  273. Yang CR, Mogenson GJ (1985) An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience 15:1015–1024

    PubMed  CAS  Google Scholar 

  274. Yukie M (2000) Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282–298

    PubMed  CAS  Google Scholar 

  275. Zaczek R, Hedreen JC, Coyle JT (1979) Evidence for a hippocampal-septal glutamatergic pathway in the rat. Exp Neurol 65:145–156

    PubMed  CAS  Google Scholar 

  276. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    PubMed  CAS  Google Scholar 

  277. Zola-Morgan S, Squire LR, Amaral DG (1989) Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys. J Neurosci 9:898–913

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Telencephalon: Hippocampus and Related Structures. In: The Human Central Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34686-9_12

Download citation

Publish with us

Policies and ethics