Skip to main content

Adaptive Detection of Multiple Change-Points in Asset Price Volatility

  • Chapter
Long Memory in Economics

Summary

This chapter considers the multiple change-point problem for time series, including strongly dependent processes, with an unknown number of change-points. We propose an adaptive method for finding the segmentation, i.e., the sequence of change-points τ with the optimal level of resolution. This optimal segmentation \( \hat \tau \) is obtained by minimizing a penalized contrast function J(τ, y)+ßpen(τ). For a given contrast function J(τ, y) and a given penalty function pen(τ), the adaptive procedure for automatically choosing the penalization parameter β is such that the segmentation \( \hat \tau \) does not strongly depend on β. This algorithm is applied to the problem of detection of change-points in the volatility of financial time series, and compared with Vostrikova’s (1981) binary segmentation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, R., Inclán, C. and Leal, R. (1999). Volatility in emerging stock markets. Journal of Financial and Quantitative Analysis, 34, 1–17.

    Article  Google Scholar 

  2. Basseville, M. and Nikiforov, N. (1993). The Detection of Abrupt Changes-Theory and Applications. Prentice-Hall: Information and System Sciences Series.

    Google Scholar 

  3. Battacharya, P.K. (1987). Maximum Likelihood estimation of a change-point in the distribution of independent random variables: general multiparameter case. Journal of Multivariate Analysis, 32, 183–208.

    Article  Google Scholar 

  4. Beran, J. and Terrin, N. (1999). Correction: Testing for a change of the long-memory parameter. Biometrika, 86, 233.

    Article  MathSciNet  Google Scholar 

  5. Beran, J. and Terrin, N. (1996). Testing for a change of the long-memory parameter. Biometrika, 83, 627–638.

    Article  MATH  MathSciNet  Google Scholar 

  6. Berkes, I., Horváth, L. and Kokoszka, P.S. (2004). Testing for parameter constancy in GARCH(p, q) models. Statistics and Probability Letters, 70, 263–273.

    Article  MathSciNet  Google Scholar 

  7. Berkes, I., Gombay, E., Horváth, L. and Kokoszka, P.S. (2004). Sequential change-point detection in GARCH(p, q) models. Econometric Theory, 20, 1140–1167.

    MATH  MathSciNet  Google Scholar 

  8. Berkes, I., Horváth, L., Kokoszka, P.S. and Shao, Q-M. (2003). On discriminating between long-range dependence and changes in mean. The Annals of Statistics, forthcoming.

    Google Scholar 

  9. Bhattacharya, R.N., Gupta, V.K. and Waymire, E. (1983). The Hurst effect under trends. Journal of Applied Probability, 20, 649–662.

    Article  MATH  MathSciNet  Google Scholar 

  10. Birgé, L. and Massart, P. (2001). A generalized C p criterion for Gaussian model selection. Preprint Université Paris-Sud.

    Google Scholar 

  11. Braun, J.V., Braun, R.K. and Muller, H.G. (2000). Multiple changepoint fitting via quasilikehood, with application to DNA sequence segmentation. Biometrika, 87, 301–314.

    Article  MATH  MathSciNet  Google Scholar 

  12. Brodsky. B. and Darkhovsky, B. (1993). Nonparametric Methods in Change-Point Problems. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  13. Chu, C.-S.J. (1995). Detecting parameter shift in GARCH models. Econometric Reviews, 14, 241–266.

    MATH  Google Scholar 

  14. Csörgö, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley.

    Google Scholar 

  15. Dalhaus, R. (1997). Fitting time series models to nonstationary processes. The Annals of Statistics, 25, 1–37.

    Article  MathSciNet  Google Scholar 

  16. Gaunersdorfer, A. and Hommes, C.H. (2005). A nonlinear structural model for volatility clustering. In: Teyssière, G. and Kirman, A., (Eds.), Long-Memory in Economics. Springer Verlag, Berlin. Appears in this volume.

    Google Scholar 

  17. Gijbels, I., Hall, P. and Kneip, A. (1999). On the estimation of jump points in smooth curves. The Annals of the Institute of Statistical Mathematics, 51, 231–251.

    Article  MATH  MathSciNet  Google Scholar 

  18. Giraitis, L., Leipus, R. and Surgailis, D. (2005). Recent advances in ARCH modelling. In: Teyssière, G. and Kirman, A., (Eds.), Long-Memory in Economics. Springer Verlag, Berlin. Appears in this volume.

    Google Scholar 

  19. Giraitis, L. and Leipus, R. (1992). Testing and estimating in the change-point problem of the spectral function. Lithuanian Mathematical Journal, 32, 20–38.

    Article  MATH  MathSciNet  Google Scholar 

  20. Giraitis, L. and Leipus, R. (1990). Functional CLT for nonparametric estimates of the spectrum and change-point problem for a spectral function. Lithuanian Mathematical Journal, 30, 674–679.

    MATH  MathSciNet  Google Scholar 

  21. Giraitis, L., Leipus, R. and Surgailis, D. (1996). The change-point problem for dependent observations. Journal of Statistical Planning and Inference, 53, 297–310.

    Article  MATH  MathSciNet  Google Scholar 

  22. Granger, C.W.J. (2002). Long memory, volatility, risk and distribution. Preprint.

    Google Scholar 

  23. Granger, C.W.J. (2000). Current perspectives on long memory processes. Academia Economic Papers, 28, 1–16.

    Google Scholar 

  24. Granger, C.W.J. and Hyung, N. (2004). Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11, 399–421.

    Article  Google Scholar 

  25. Granger, C.W.J. and Hyung, N. (1999). Occasional structural breaks and long-memory. Preprint.

    Google Scholar 

  26. Granger, C.W.J. and Ding, Z. (1995). Some properties of absolute returns, an alternative measure of risk. Annales d’ Économie et de Statistique, 40, 67–91.

    MathSciNet  Google Scholar 

  27. Hawkins, D.L. (1977). Testing a sequence of observations for a shift in location. Journal of the American Statistical Association, 72, 180–186.

    Article  MATH  MathSciNet  Google Scholar 

  28. Horváth, L. (2001). Change-point detection in long-memory processes. Journal of Multivariate Analysis, 78, 218–234.

    Article  MATH  MathSciNet  Google Scholar 

  29. Horváth, L., Kokoszka, P.S. and Teyssière, G. (2001). Empirical process of the squared residuals of an ARCH sequence. The Annals of Statistics, 29, 445–469.

    Article  MATH  MathSciNet  Google Scholar 

  30. Horváth, L. and Shao, Q-M. (2001). Limit theorems for quadratic forms with application to the Whittle’s estimate. Annals of Applied Probability, 9, 146–187.

    Google Scholar 

  31. Inclán, C. and Tiao, G.C. (1994). Use of cumulative sums of squares for retrospective detection of changes in variance. Journal of the American Statistical Association, 89, 913–923.

    Article  MATH  MathSciNet  Google Scholar 

  32. Kay, S.M. (1998). Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall: Signal Processing Series.

    Google Scholar 

  33. Kim, H.J. (1994). Likelihood ratio and cumulative sum tests for a change-point in linear regression. Journal of Multivariate Analysis, 51, 54–70.

    Article  MATH  MathSciNet  Google Scholar 

  34. Kokoszka, P.S. and Leipus, R. (1999). Testing for parameter changes in ARCH models. Lithuanian Mathematical Journal, 39, 231–247.

    Article  MATH  MathSciNet  Google Scholar 

  35. Kokoszka, P.S. and Leipus, R. (2000). Change-point estimation in ARCH models. Bernoulli, 6, 513–539.

    Article  MATH  MathSciNet  Google Scholar 

  36. Kokoszka, P.S. and Leipus, R. (2003). Detection and estimation of changes in regime. In: Doukhan, P., Oppenheim, G. and Taqqu, M.S. (Eds.), Long-Range Dependence: Theory and Applications, 325–337. Birkhauser.

    Google Scholar 

  37. Kokoszka, P.S. and Teyssière, G. (2002). Change-point detection in GARCH models: Asymptotic and bootstrap tests. Preprint.

    Google Scholar 

  38. Lavielle, M. (1999). Detection of multiple changes in a sequence of dependent variables. Stochastic Processes and their Applications, 83, 79–102.

    Article  MATH  MathSciNet  Google Scholar 

  39. Lavielle, M. (1998). Optimal segmentation of random processes. IEEE Transactions on Signal Processing, 46, 1365–1373.

    Article  Google Scholar 

  40. Lavielle, M. (1993). Detection of changes in the spectrum of a multidimensional process. IEEE Transactions on Signal Processing, 41, 742–749.

    Article  MATH  Google Scholar 

  41. Lavielle, M. and Teyssière, G. (2005). Detection of multiple change-points in multivariate time series. Preprint.

    Google Scholar 

  42. Lavielle, M. and Lebarbier, E. (2001). An application of MCMC methods to the multiple change-points problem. Signal Processing, 81, 39–53.

    Article  MATH  Google Scholar 

  43. Lavielle, M. and Moulines, E. (2000). Least-squares estimation of a unknown number of shifts in a time series. Journal of Time Series Analysis, 21, 33–59.

    Article  MATH  MathSciNet  Google Scholar 

  44. Lavielle, M. and Ludeña, C. (2000). The multiple change-points problem for the spectral distribution. Bernoulli, 6, 845–869.

    Article  MATH  MathSciNet  Google Scholar 

  45. Lebarbier, E. (2001). Adaptive estimation of a piecewise continuous signal in Gaussian noise. Preprint Université Paris-Sud.

    Google Scholar 

  46. Lombard, F. (1987). Rank tests for change point problems. Biometrika, 74, 615–624.

    Article  MATH  MathSciNet  Google Scholar 

  47. Mia, B.Q. and Zhao, L.C. (1988). Detection of change points using rank methods. Communications in Statistics-Theory and Methods, 17, 3207–3217.

    MathSciNet  Google Scholar 

  48. Mikosch, T. and StĂricĂ, C. (2004). Change of structure in financial time series and the GARCH model. REVSTAT Statistical Journal, 2, 41–73.

    Google Scholar 

  49. Mikosch, T. and StĂricĂ, C. (2003) Long-range dependence effects and ARCH modeling. In: Doukhan, P., Oppenheim, G. and Taqqu, M.S. (Eds.), Long-Range Dependence: Theory and Applications. Birkhauser, Boston, pp. 439–459.

    Google Scholar 

  50. Mikosch, T. and StĂricĂ, C. (1999). Change of structure in financial time series, long range dependence and the GARCH model. Preprint.

    Google Scholar 

  51. Newey, W.K. and West, K.D. (1987). A simple positive definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703–708.

    Article  MATH  MathSciNet  Google Scholar 

  52. Robinson, P.M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. Journal of Econometrics, 47, 67–84.

    Article  MATH  MathSciNet  Google Scholar 

  53. Schechtman, E. and Wolfe, D.A. (1985). Multiple change points problem-nonparametric procedures for estimation of the points of change. Communications in Statistics-Simulation and Computation, 14, 615–631.

    MATH  Google Scholar 

  54. Sen, A. and Srivastava, M.S. (1975). On tests for detecting change in the mean. The Annals of Statistics, 3, 96–103.

    MathSciNet  Google Scholar 

  55. StĂricĂ, C. and Granger, C.W.J. (2005). Nonstationarities in stock returns. Review of Economics and Statistics, 87, 503–522

    Article  Google Scholar 

  56. Teyssière, G. and Abry, P. (2005). Wavelet analysis of nonlinear long-range dependent processes. Applications to financial time series. In: Teyssière, G. and Kirman, A., (Eds.), Long-Memory in Economics. Springer Verlag, Berlin. Appears in this volume.

    Google Scholar 

  57. Teyssière, G. (2003). Interaction models for common long-range dependence in asset price volatility. In: Rangarajan, G., Ding, M. (Eds.), Processes with Long Range Correlations: Theory and Applications, Lecture Notes in Physics, Vol. 621. Springer Verlag, Berlin, pp. 251–269.

    Google Scholar 

  58. Teyssière, G. (1997). Modelling exchange rates volatility with multivariate long-memory ARCH processes. Preprint.

    Google Scholar 

  59. Vostrikova, L.Ju. (1981). Detection of “disorder” in multidimensional random processes. Soviet Mathematics Doklady, 24, 55–59.

    MATH  Google Scholar 

  60. Whitcher, B., Byers, S.D., Guttorp, P. and Percival D.B. (2002). Testing for homogeneity of variance in time series: long memory, wavelets and the nile river. Water Resources Research, 38, 10.1029/2001WR000509.

    Google Scholar 

  61. Yao, Y.C. (1988). Estimating the number of change-points via Schwarz criterion. Statistics & Probability Letters, 6, 181–189.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Lavielle, M., Teyssière, G. (2007). Adaptive Detection of Multiple Change-Points in Asset Price Volatility. In: Teyssière, G., Kirman, A.P. (eds) Long Memory in Economics. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34625-8_5

Download citation

Publish with us

Policies and ethics