Advertisement

Monoclonal Antibody Therapy of APL

  • P. G. Maslak
  • J. G. Jurcic
  • D. A. Scheinberg
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 313)

Abstract

Acute promyelocytic leukemia (APL) is a rare subtype of acute myeloid leukemia (AML) for which a number of targeted therapies have been developed. The “targets” have included both genotypic and phenotypic features of the disease. The application of monoclonal antibodies (MAbs) to this disease to date have been limited to a relatively small number of studies where this therapy has been used to supplement effective approaches to the disease. The preliminary results have been promising, and further development of this modality as an effective adjunct to existing treatment regimens will most certainly occur in the near future.

Keywords

Acute Myelogenous Leukemia Retinoic Acid Acute Promyelocytic Leukemia Minimal Residual Disease Arsenic Trioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rowley J, Golomb HM, Dougherty C (1997) 15/17 trans-location, a consistent chromosomal change in acute promyelocytic leukemia. Lancet 1:549–550Google Scholar
  2. 2.
    Larsen RA, Kondo K, Vardiman JW, et al (1984) Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med 76:827–841CrossRefGoogle Scholar
  3. 3.
    de Thë H, Chomienne C, Lanotte M, et al (1990) The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347:558–561CrossRefPubMedGoogle Scholar
  4. 4.
    Kakizuka A, Miller WH, Umesono K, et al (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PLL. Cell 66:663CrossRefPubMedGoogle Scholar
  5. 5.
    de Thë H, Lavau C, Marchio A, et al (1991) The PML/RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675CrossRefPubMedGoogle Scholar
  6. 6.
    Melnick A, Licht JD (1999) Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93:3167–3215PubMedGoogle Scholar
  7. 7.
    Pandolfi PP, Alcalay M, Fagioli M, et al (1992) Genomic variability and alternative splicing generate multiple PML-RARα transcripts that encode aberrant PML proteins and PML/RARα isoforms in acute promyelocytic leukemia. EMBO J 11:1397–1407PubMedGoogle Scholar
  8. 8.
    Vahdat L, Maslak P, Miller WH, et al (1994) Early mortality and retinoic acid syndrome in acute promyelocytic leukemia: impact of leucocytosis, low-dose chemotherapy, PML/RARα isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood 84:3843–3849PubMedGoogle Scholar
  9. 9.
    Jurcic JG, Nimer SD, Scheinberg D, et al (2001) Prognostic significance of minimal residual disease detection and PML/RAR-α isoform type: long-term follow-up in acute promyelocytic leukemia. Blood 98:2651–2656CrossRefPubMedGoogle Scholar
  10. 10.
    Gallagher RE, Willman CL, Slack JL, et al (1997) Association of PML/RARα fusion mRNA type with pre-treatment characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood 90:1656–1663PubMedGoogle Scholar
  11. 11.
    Hong SH, David G, Wong CW, et al (1997) SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) and PLZF-RARα on coproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:9028–9033CrossRefPubMedGoogle Scholar
  12. 12.
    Guidez F, Ivins S, Zhu J, et al (1998) Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML-and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 91:2634–2642PubMedGoogle Scholar
  13. 13.
    Heinzel T, Lavinski R, Mullen T, et al (1997) A complex containing N-CoR, mSin3 and histone deacetylase, mediates transcriptional repression. Nature 387:43–48CrossRefPubMedGoogle Scholar
  14. 14.
    Lin RJ, Nagy L, Inoue S, et al (1998) Role of histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814CrossRefPubMedGoogle Scholar
  15. 15.
    Uteley RT, Ikeda K, Grant PA, et al (1998) Transcriptional activators direct histone acetyltransferase complexed to nucleosomes. Nature 30:498–502Google Scholar
  16. 16.
    Chen Z, Brand NJ, Chen A, et al (1993) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation association with acute promyelocytic leukaemia. EMBO J 12:1161–1167PubMedGoogle Scholar
  17. 17.
    Licht JD, Chomienne C, Goy A, et al (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with trans-location (11;17). Blood 85:1083–1094PubMedGoogle Scholar
  18. 18.
    Redner RL, Chen JD, Rush EA, et al (2000) The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood 95:2683–2690PubMedGoogle Scholar
  19. 19.
    Wells RA, Catzavelos C, Kamel-Reid S (1997) Fusion of retinoic acid receptor α to NUMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 17:109–113CrossRefPubMedGoogle Scholar
  20. 20.
    Arnould C, Phillippe C, Bourdon V, et al (1999) The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 8:1741–1749CrossRefPubMedGoogle Scholar
  21. 21.
    He LZ, Guidez F, Tribioli C, et al (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18:126–135CrossRefPubMedGoogle Scholar
  22. 22.
    Miller WH Jr, Kakizuka A, Frankel SR, et al (1992) Reverse transcription polymerase chain reaction for the re-arranged retinoic acid receptor α clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci USA 89:2694–2698CrossRefPubMedGoogle Scholar
  23. 23.
    Lo Coco F, Diverio D, Pandolfi PP, et al (1992) Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukemia. Lancet 340:1437–1438CrossRefPubMedGoogle Scholar
  24. 24.
    Miller WH Jr, Levine K, De Blasio A, et al (1993) Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction. Blood 82:1689–1694PubMedGoogle Scholar
  25. 25.
    Grimwade D, Howe K, Langabeer S, et al (1996) Minimal residual disease detection in acute promyelocytic leukemia by reverse-transcriptase PCR: evaluation of PML-RARα and RARα-PML assessment in patients who ultimately relapse. Leukemia 10:61–66PubMedGoogle Scholar
  26. 26.
    Diverio D, Rossi V, Avvisati G, et al (1998) Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARα fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. Blood 92:784–789PubMedGoogle Scholar
  27. 27.
    Bennett JM, Catovsky D, Daniel MT, et al (1976) Proposal for the classification of the acute leukaemias (FAB Cooperative Group). Br J Haematol 33:451–458PubMedGoogle Scholar
  28. 28.
    Golomb HM, Rowley JD, Vardiman JW, et al (1980)Microgranular acute promyelocytic leukaemia: a distinct clinical, ultrastructural, and cytogenetic entity. Blood 55:253–259PubMedGoogle Scholar
  29. 29.
    Bennett JM, Catovsky D, Daniel MT, et al (1980) A variant form of hypergranular promyelocytic leukemia (M3). Br J Haematol 44:169–170PubMedGoogle Scholar
  30. 30.
    Sainty D, Liso V, Cantu-Rajnoldi A, et al (2000)A new morphological classification system for acute promyelocytic distinguishes cases with underlying PLZF-RARα rearrangements. Blood 96:1287–1296PubMedGoogle Scholar
  31. 31.
    Das Gupta A, Sapre RS, Shah AS, et al (1989) Cytochemical and immunophenotypic heterogeneity in acute promyelocytic leukemia. Acta Haematol 81:5–9PubMedGoogle Scholar
  32. 32.
    Paietta E, Andersen J, Gallagher R, et al (1994) The immunophenotype of acute promyelocytic leukemia (APL): an ECOG. Leukemia 8:1108–1112PubMedGoogle Scholar
  33. 33.
    Erbert WN, Asbahr H, Rule SA, et al (1994) Unique immunophenotype of acute promyelocytic leukaemia as defined by CD9 and CD68 antibodies. Br J Haematol 88:101–104Google Scholar
  34. 34.
    Cunningham I, Gee TS, Reich LM, et al (1989) Acute promyelocytic leukemia: treatment results during a decade at Memorial Hospital. Blood 73:1116–1122PubMedGoogle Scholar
  35. 35.
    Kantarjian H, Keating MJ, Walters RS, et al (1986) Acute promyelocytic leukemia: MD Anderson Hospital experience. Am J Med 80:789–797CrossRefPubMedGoogle Scholar
  36. 36.
    Di Bona E, Avvisati G, Castaman G, et al (2000) Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukemia. Br J Haematol 108:689–695CrossRefPubMedGoogle Scholar
  37. 37.
    Head D, Kopecky KJ, Weick J, et al (1995) Effect of aggressive daunomycin therapy on survival in acute promyelocytic leukemia. Blood 86:1717–1728PubMedGoogle Scholar
  38. 38.
    Estey E, Thall PF, Pierce S, et al (1997) Treatment of newly diagnosed acute promyelocytic leukemia without cytarabine. J Clin Oncol 15:483–490PubMedGoogle Scholar
  39. 39.
    Huang ME, Ye YC, Chen SR, et al (1988) Use of all-trans retinoic acid in treatment of acute promyelocytic leukemia. Blood 72:567–572PubMedGoogle Scholar
  40. 40.
    Warrell RP Jr, Frankel SR, Miller WH Jr, et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoid acid). N Engl J Med 324:1385–1393PubMedGoogle Scholar
  41. 41.
    Huang ME, Ye YC, Chen SR, et al (1987) All-trans retinoic acid with or without low dose cytosine arabinoside in acute promyelocytic leukemia-Report of 6 cases. Chin Med J 100:949–953PubMedGoogle Scholar
  42. 42.
    Fenaux P, Le Dely MC, Castaigne S, et al (1993) Effect of all-trans retinoic acid in newly diagnosed acute promyelocytic leukemia: results of a multicenter randomized trial. Blood 82:3241–3249PubMedGoogle Scholar
  43. 43.
    Lo Coco F, Avvisati G, Diverio D, et al (1991) Molecular evaluation of response to all-trans retinoic acid therapy in patients with acute promyelocytic leukemia. Blood 77:1657–1661PubMedGoogle Scholar
  44. 44.
    Frankel SR, Eardley A, Lauwers G, Weiss M, Warrell RP Jr (1992) The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med 117:292–296PubMedGoogle Scholar
  45. 45.
    Frankel SR, Eardley A, Heller G, et al (1994) All-trans retinoic acid for acute promyelocytic leukemia: results of the New York study. Ann Intern Med 120:278–286PubMedGoogle Scholar
  46. 46.
    Warrell RP Jr, Maslak P, Eardley A, et al (1994) Treatment of acute promyelocytic leukemia with all-trans retinoic acid: an update of the New York experience. Leukemia 8:929–933PubMedGoogle Scholar
  47. 47.
    Castaigne S, Chomienne C, Daniel MT, et al (1990) All-trans retinoic acid as a differentiating therapy for acute promyelocytic leukemias. I. Clinical Results. Blood 76:1704–1713PubMedGoogle Scholar
  48. 48.
    Avvisati G (1998) AIDA Protocol: the Italian way of treating APL (Abrstr). Br J Haematol 102:593aGoogle Scholar
  49. 49.
    Tallman MS, Andersen JW, Schiffer CA, et al (1997) All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med 337:1021–1028CrossRefPubMedGoogle Scholar
  50. 50.
    Fenaux P, Chastang C, Chevret S, et al (1999) A randomized comparison of all trans-retinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 94:1192–1200PubMedGoogle Scholar
  51. 51.
    Avvisati G, Petti MC, Lo Coco F, et al (2003) AIDA: the Italian way of treating acute promyelocytic leukemia (APL), final act (Abstr). Blood 102:487Google Scholar
  52. 52.
    Lobe I, Rigal-Huget FR, Vekoff A, et al (2003) Myelodysplastic syndrome after acute promyelocytic leukemia: the European APL group experience. Leukemia 17:1600–1604CrossRefPubMedGoogle Scholar
  53. 53.
    Andrews RG, Takahashi M, Segal GM, et al (1986) The L4F3 antigen is expressed by unipotent colony-forming cells but not by their precursors. Blood 68:1030–1035PubMedGoogle Scholar
  54. 54.
    Scheinberg DA, Lovett D, Divgi CR, et al (1991) A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 9:478–490PubMedGoogle Scholar
  55. 55.
    Jurcic JG, Caron PC, Miller WH Jr, et al (1995) Sequential targeted therapy for relapsed acute promyelocytic leukemia with all-trans retinoic acid and anti-CD33 monoclonal antibody M195. Leukemia 9:244–248PubMedGoogle Scholar
  56. 56.
    Caron PC, Co MS, Bull MK, et al (1992) Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 52:6761–6767PubMedGoogle Scholar
  57. 57.
    Caron PC, Jurcic JG, Scott AM, et al (1994) A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood 83:1760–1768PubMedGoogle Scholar
  58. 58.
    Xu Y, Scheinberg DA (1995) Elimination of human leukemia by monoclonal antibodies in an athymic nude mouse leukemia model. Clin Cancer Res 1:1179–1187PubMedGoogle Scholar
  59. 59.
    Caron PC, Dumont L, Scheinberg DA (1998) Supersaturating infusional humanized anti-CD33 monoclonal antibody HuM195 in myelogenous leukemia. Clin Cancer Res 4:1421–1428PubMedGoogle Scholar
  60. 60.
    Feldman E, Kalaycio M, Weiner G, et al (2003) Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia 17:314–318CrossRefPubMedGoogle Scholar
  61. 61.
    Feldman E, Stone RM, Brandwein J, et al (2002) Phase III randomized trial of an anti-CD33 monoclonal antibody (HuM195) in combination with chemotherapy compared to chemotherapy alone in adults with refractory or first-relapse acute myeloid leukemia (AML) (Abstr). Proc Am Soc Clin Oncol 21:261aGoogle Scholar
  62. 62.
    Jurcic JG, DeBlasio T, Dumont L, Yao TJ, Scheinberg DA (2000) Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res 6:372–380PubMedGoogle Scholar
  63. 63.
    Mulford DA, Maslak PG, Weiss MA, Scheinberg DA, Jurcic JG (2003) Reducing standard postremission chemotherapy in acute promyelocytic leukemia (APL) with risk-adapted therapy (Abrstr). Blood 102:619a–620aGoogle Scholar
  64. 64.
    Sievers EL, Appelbaum FR, Spielberger RT, et al (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684PubMedGoogle Scholar
  65. 65.
    Sievers EL, Larson RA, Staudtmauer EA, et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244–3254PubMedGoogle Scholar
  66. 66.
    Amadori S, Suciu S, Willemze R, Mandelli F, Selleslag D, Stauder R, Ho A, Denzlinger C, Leone G, Fabris P, Muus P, Vignetti M, Hagemeijer A, Beeldens F, Anak O, De Witte T; EORTC leukemia group; GIMEMA leukemia group (2004) Sequential administration of gemtuzumab ozogamcin and convential chemotherapy as first line therapy in elderly patients with acute myeloid leukemia: a phase II study (AML-15) of the EORTC and GIMEMA leukemia groups. Haematologica 89:950–956PubMedGoogle Scholar
  67. 67.
    Sievers E, Larson R, Estey E, et al (2002) Final report of prolonged disease-free survival in patients with acute myeloid leukemia in first relapse treated with gemtuzumab ozogamicin followed by hematpoietic stemcell transplantation (Abstr). Blood 100:89aCrossRefGoogle Scholar
  68. 68.
    Rajvanshi P, Schulman H, Sievers E, et al (2002) Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 99:10–14CrossRefGoogle Scholar
  69. 69.
    Giles FJ, Kantarjian HM, Kornblau SM, et al (2001) Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92:406–413CrossRefPubMedGoogle Scholar
  70. 70.
    Takeshita A, Shinjo K, Naito K, et al (2005) Efficacy of gemtuzumab ozogamicin on ATRA-and arsenic resistant acute promyelocytic leukemia (APL) cells. Leukemia 19:1306–1311CrossRefPubMedGoogle Scholar
  71. 71.
    Estey E, Giles FJ, Beran M, et al (2002) Experience with gemtuzumab ozogamycin (“myelotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 99:4222–4224CrossRefPubMedGoogle Scholar
  72. 72.
    Lo-Coco F, Cimino G, Breccia M, et al (2004) Gemtuzumab ozogamicin (Myelotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 104:1995–1999CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • P. G. Maslak
    • 1
  • J. G. Jurcic
    • 1
  • D. A. Scheinberg
    • 1
  1. 1.Memorial Sloan-Kettering Cancer Center and Weill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations