Ferroelectric Size Effects

  • Céline LichtensteigerEmail author
  • Matthew Dawber
  • Jean-Marc Triscone
Part of the Topics in Applied Physics book series (TAP, volume 105)


In this chapter, we have reviewed, with a focus on our own efforts, the history, current and future perspectives on the problem of ferroelectric size effects. This past decade has seen an explosion of activity in the field of nanoscale ferroelectrics, with a broad spectrum of novel and artificial materials explored, and a huge potential for new discoveries and novel applications and devices. It is safe to say that although we are at present building a solid understanding of the fundamental driving force for ferroelectric size effects, we can expect some new and fascinating physics to manifest itself as we continue to push the envelope in this exciting and rapidly developing area.


Ferroelectric Property Barium Titanate Spontaneous Polarization Paraelectric Phase Strontium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues: Beating the superparamagnetic limit with exchange bias, Nature 423, 850–853 (2003) CrossRefGoogle Scholar
  2. A. Ruediger, T. Schneller, A. Roelofs, S. Tiedke, T. Schmitz, R. Waser: Nanosize ferroelectric oxides – tracking down the superparaelectric limit, Appl. Phys. A 80, 1247–1255 (2005) CrossRefGoogle Scholar
  3. P. Ghosez, J. Junquera: First-principles modeling of ferroelectric oxide nanostructures, in M. Rieth, W. Schommers (Eds.): Nanocomposites, Nano-Assemblies, and Nanosurfaces, vol. 9, Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers, Stevenson Ranch 2006) Google Scholar
  4. R. Kretschmer, K. Binder: Surface effects on phase transitions in ferroelectrics and dipolar magnets, Phys. Rev. B 20, 1065–1076 (1979) CrossRefGoogle Scholar
  5. D. R. Tilley, B. Zeks: Landau theory of phase transitions in thick films, Solid State Commun. 49, 823 (1984) CrossRefGoogle Scholar
  6. S. Li, J. A. Eastman, Z. Li, C. M. Foster, R. E. Newnham, L. E. Cross: Size effects in nanostructures ferroelectrics, Phys. Lett. A 212, 341–346 (1996) CrossRefGoogle Scholar
  7. S. Li, J. A. Eastman, J. M. Vetrone, C. M. Foster, R. E. Newnham, L. E. Cross: Dimension and size effects in ferroelectrics, Jpn. J. Appl. Phys. 36, 5169–5174 (1997) CrossRefGoogle Scholar
  8. A. E. Feuersanger, P. Lublin: Electrical properties and structure of barium titanate films, J. Electrochem. Soc. 110, C192 (1963) Google Scholar
  9. A. E. Feuersanger, A. K. Hagenlocher, A. L. Solomon: Preparation and properties of thin barium titanate films, J. Electrochem. Soc. 111, 1387–1391 (1964) CrossRefGoogle Scholar
  10. J. R. Slack, J. C. Burfoot: Electrical properties of flash evaporated ferroelectric BaTiO3 thin films, J. Phys. C 4, 898–909 (1971) CrossRefGoogle Scholar
  11. Y. Y. Tomashpolski: Structure studies of ferroelectric vacuum deposits, Ferroelectrics 7, 253–255 (1974) Google Scholar
  12. Y. Y. Tomashpolski, M. A. Sevostia, M. V. Pentegov: Ferroelectric vacuum deposits of complex oxide type structure, Ferroelectrics 7, 257–258 (1974) Google Scholar
  13. Y. Y. Tomashpolski, M. A. Sevostia: Structure of barium-titanate films produced by vacuum evaporation, Kristallografija 19, 1040 (1974) Google Scholar
  14. Y. Y. Tomashpolski, M. A. Sevostia: Ferroelectric nucleus in barium-titanate, Fiz. Tverd. Tela 16, 2689–2692 (1974) Google Scholar
  15. A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, A. Zlatkin: Two-dimensional ferroelectric films, Nature (London) 391, 874–877 (1998) CrossRefGoogle Scholar
  16. T. Tybell, C. H. Ahn, J.-M. Triscone: Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75, 856–858 (1999) CrossRefGoogle Scholar
  17. S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. {Ramana Murty}, O. Auciello, G. R. Bai, G. B. Stephenson: Observation of nanoscale 180 stripe domains in ferroelectric PbTiO3 thin films, Phys. Rev. Lett. 89, 067601 (2002) CrossRefGoogle Scholar
  18. D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, C. Thompson: Ferroelectricity in ultrathin perovskite films, Science 304, 1650–1653 (2004) CrossRefGoogle Scholar
  19. W. Känzig: Space charge layer near the surface of a ferroelectric, Phys. Rev. 98, 549 (1955) CrossRefGoogle Scholar
  20. I. K. Yoo, S. B. Desu: Mechanism of fatigue in ferroelectric thin films, Phys. Sat. Sol. A 133, 565 (1992) CrossRefGoogle Scholar
  21. M. Dawber, J. F. Scott: A model for fatigue in ferroelectric perovskite thin films, Appl. Phys. Lett. 76, 1060–1062 (2000) CrossRefGoogle Scholar
  22. V. C. Lo: Modeling the role of oxygen vacancy on ferroelectric properties in thin films, J. Appl. Phys. 92, 6778–6786 (2002) CrossRefGoogle Scholar
  23. P. K. Larsen, G. J. M. Dormans, D. J. Taylor, P. J. van Veldhoven: Ferroelectric properties and fatigue of {P}b{Z}r0.51{T}i0.49{O}3 thin films of varying thickness: Blocking layer model, J. Appl. Phys. 76, 2405–2413 (1994) CrossRefGoogle Scholar
  24. S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, P. V. Dressendorfer: Device modeling of ferroelectric capacitors, J. Appl. Phys. 68, 6463–6471 (1990) CrossRefGoogle Scholar
  25. A. K. Tagantsev, M. Landivar, E. Colla, N. Setter: Identification of passive layer in ferroelectric thin films from their switching parameters, J. Appl. Phys. 78, 2623–2630 (1995) CrossRefGoogle Scholar
  26. N. I. Lebedev, A. S. Sigov: Surface inhomogeneties and coercive field of thin ferroelectric film, Integr. Ferroelectr. 4, 21 (1994) CrossRefGoogle Scholar
  27. A. K. Tagantsev: Size effects in polarization switching in ferroelectric thin films, Integr. Ferroelectr. 16, 237 (1997) CrossRefGoogle Scholar
  28. O. G. Vendik, S. P. Zubko: Ferroelectric phase transition and maximum dielectric permittivity of displacement type ferroelectrics ({B}a_{\bf x}{S}r1 - {\bf x}{T}i{O}3), J. Appl. Phys. 88, 5343–5350 (2000) CrossRefGoogle Scholar
  29. A. Lookman, R. M. Bowman, J. M. Gregg, J. Kut, S. Rios, M. Dawber, A. Ruediger, J. F. Scott: Thickness independence of true phase transition temperatures in barium strontium titanate films, J. Appl. Phys. 96, 555–562 (2004) CrossRefGoogle Scholar
  30. M. Dawber, K. M. Rabe, J. F. Scott: Physics of thin ferroelectric oxides, Rev. Mod. Phys. 77, 1083–1130 (2005) CrossRefGoogle Scholar
  31. P. Ghosez, K. M. Rabe: Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films, Appl. Phys. Lett. 76, 2767–2769 (2000) CrossRefGoogle Scholar
  32. B. Meyer, D. Vanderbilt: Ab-initio study of BaTiO3 and PbTiO3 surfaces in external electric fields, Phys. Rev. B 63, 205426 (2001) CrossRefGoogle Scholar
  33. J. Junquera, P. Ghosez: Critical thickness for ferroelectricity in perovskite ultrathin films, Nature (London) 422, 506–509 (2003) CrossRefGoogle Scholar
  34. R. R. Mehta, B. D. Silverman, J. T. Jacobs: Depolarization fields in thin ferroelectric films, J. Appl. Phys. 44, 3379–3385 (1973) CrossRefGoogle Scholar
  35. I. P. Batra, P. Wurfel, B. D. Silverman: Depolarization field and stability considerations in thin ferroelectric films, J. Vac. Sci. Technol. 10, 687–692 (1973) CrossRefGoogle Scholar
  36. J. Junquera, K. M. Rabe, P. Ghosez: Effects of the depolarizing fields in perovskite ultrathin films (2003), unpublished Google Scholar
  37. M. Dawber, P. Chandra, P. B. Littlewood, J. F. Scott: Depolarization corrections to the coercive field in thin-film ferroelectrics, J. Phys. Condens. Matter 15, L393–L398 (2003) CrossRefGoogle Scholar
  38. D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, A. M. Rappe: Stabilization of monodomain polarization in ultrathin PbTiO3 films, Phys. Rev. Lett. 96, 1–4 (2006) CrossRefGoogle Scholar
  39. C. Lichtensteiger, J.-M. Triscone, J. Junquera, P. Ghosez: Ferroelectricity and tetragonality in ultrathin PbTiO3 films, Phys. Rev. Lett. 94, 047603 (2005) CrossRefGoogle Scholar
  40. L. Despont, C. Lichtensteiger, C. Koitzsch, F. Clerc, M. G. Garnier, F. J. {Garcia de Abajo}, E. Bousquet, P. Ghosez, J.-M. Triscone, P. Aebi: Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films, Phys. Rev. B 73, 094110 (2006) CrossRefGoogle Scholar
  41. L. Despont, C. Lichtensteiger, F. Clerc, M. G. Garnier, F. J. {Garcia de Abajo}, M. A. {Van Hove}, J.-M. Triscone, P. Aebi: X-ray photoelectron diffraction study of ultrathin PbTiO3 films, Eur. Phys. J. B 49, 141–146 (2006) CrossRefGoogle Scholar
  42. C. B. Eom, J. Z. Sun, B. M. Lairson, S. K. Streiffer, A. F. Marshall, K. Yamamoto, S. M. Anlage, J. C. Bravman, T. H. Geballe, S. S. Laderman, R. C. Taber, R. D. Jacowitz: Synthesis and properties of O7 thin films grown in situ by \unit{90}{\degree} off-axis single magnetron sputtering, Physica C 171, 354–383 (1990) CrossRefGoogle Scholar
  43. C. Lichtensteiger, J.-M. Triscone: Investigation of ferroelectricity in ultrathin PbTiO3 films, Integr. Ferroelectr. 61, 143–148 (2004) CrossRefGoogle Scholar
  44. T. Tybell, C. H. Ahn, J.-M. Triscone: Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films, Appl. Phys. Lett. 72, 1454–1456 (1998) CrossRefGoogle Scholar
  45. A. K. {Sarin Kumar}, P. Paruch, D. Marr\'e, L. Pellegrino, T. Tybell, S. Ballandras, J.-M. Triscone: A novel high frequency surface acoustic wave device based on piezoelectric interdigital transducers, Ferroelectrics 63, 55–62 (2004) CrossRefGoogle Scholar
  46. R. J. Nelmes, W. F. Kuhs: The crystal structure of tetragonal PbTiO3 at room temperature and at \unit{700}{\kelvin}, Solid State Commun. 54, 721–723 (1985) CrossRefGoogle Scholar
  47. J. Joseph, T. M. Vimala, V. Sivasubramanian, V. R. K. Murthy: Structural investigations on Pb(Zrx}Ti1-x)O3 solid solutions using the {X}-ray {R}ietveld method, J. Mater. Sci. 35, 1571–1575 (2000) CrossRefGoogle Scholar
  48. U. V. Waghmare, K. M. Rabe: Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO3, Phys. Rev. B 55, 6161–6173 (1997) CrossRefGoogle Scholar
  49. A. G. Zembilgotov, N. A. Pertsev, H. Kohlstedt, R. Waser: Ultrathin epitaxial ferroelectric films grown on compressive substrates: {C}ompetition between the surface and strain effects, J. Appl. Phys. 91, 2247–2254 (2002) CrossRefGoogle Scholar
  50. W. F. {Egelhoff, Jr}: X-ray photoelectron and {Auger} electron forward scattering. a new tool for surface crystallography, Crit. Rev. Solid State Mater. Sci. 16, 213–235 (1990) CrossRefGoogle Scholar
  51. C. S. Fadley: Synchrotron Radiation Research: Advances in Surface Science, R. Z. Bachrach edn (Plenum, New York 1990) Google Scholar
  52. R. E. Cohen: Origin of ferroelectricity in perovskite oxides, Nature (London) 358, 136–138 (1992) CrossRefGoogle Scholar
  53. F. J. {Garcia de Abajo}, M. A. {Van Hove}, C. S. Fadley: Multiple scattering of electrons in solids and molecules: {A} cluster-model approach, Phys. Rev. B 63, 075404 (2001) CrossRefGoogle Scholar
  54. J. B. Pendry: Low Energy Electron Diffraction (Academic Press, London 1974) Google Scholar
  55. A. Munkholm, S. K. Streiffer, M. V. {Ramana Murty}, J. A. Eastman, C. Thompson, O. Auciello, L. Thompson, J. F. Moore, G. B. Stephenson: Antiferrodistortive reconstruction of the PbTiO3 (001) surface, Phys. Rev. Lett. 88, 016101 (2002) CrossRefGoogle Scholar
  56. V. Nagarajan, S. Prasertchoung, T. Zhao, H. Zheng, J. Ouyang, R. Ramesh, W. Tian, X. Q. Pan, D. M. Kim, C. B. Eom, H. Kohlstedt, R. Waser: Size effects in ultrathin epitaxial ferroelectric heterostructures, Appl. Phys. Lett. 84, 5225–5227 (2004) CrossRefGoogle Scholar
  57. V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. Ramesh, P. Ghosez, K. M. Rabe: Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures, J. Appl. Phys. 100, 051609 (2006) CrossRefGoogle Scholar
  58. J. Y. Jo, Y. S. Kim, D. H. Kim, J. D. Kim, Y. J. Chang, J. H. Kong, Y. D. Park, T. K. Song, J.-G. Yoon, J. S. Jung, T. W. Noh: Thickness-dependent ferroelectric properties in fully-strained SrRuO3/BaTiO3/SrRuO3 ultra-thin capacitors, Thin Solid Films 486, 149–152 (2005) CrossRefGoogle Scholar
  59. D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J.-G. Yoon, T. K. Song, T. W. Noh: Polarization relaxation induced by a depolarization field in ultrathin ferroelectric {B}a{T}i{O}3 capacitors, Phys. Rev. Lett. 95, 237602 (2005) CrossRefGoogle Scholar
  60. V. Janovec: On the theory of the coercive field of single-domain crystals of {B}a{T}i{O}_3, Czech. J. Phys. 8, 3 (1958) CrossRefGoogle Scholar
  61. H. F. Kay, J. W. Dunn: Thickess dependence of nucleation field of triglycine sulphate, Philos. Mag. 7, 2027 (1962) CrossRefGoogle Scholar
  62. J. F. Scott: Ferroelectric Memories (Springer, Berlin 2000) Google Scholar
  63. H. K. Chan, C. H. Lam, F. G. Shin: Time-dependent space-charge-limited conduction as a possible origin of the polarization offsets observed in compositionally graded ferroelectric films, J. Appl. Phys. 95, 2665–2671 (2004) CrossRefGoogle Scholar
  64. S. Ducharme, V. M. Fridkin, A. V. Bune, S. P. Palto, L. M. Blinov, N. N. Petukhova, S. G. Yudin: Intrinsic ferroelectric coercive field, Phys. Rev. Lett. 84, 175–178 (2000) CrossRefGoogle Scholar
  65. N. A. Pertsev, J. {Rodriguez Contreras}, V. G. Kukhar, B. Hermanns, H. Kohlstedt, R. Waser: Coercive field of ultrathin Pb(Zr0.52Ti0.48O3) epitaxial films, Appl. Phys. Lett. 83, 3356–3358 (2003) CrossRefGoogle Scholar
  66. A. T. J. {van Helvoort}, O. Dahl, B. G. Soleim, R. Holmestad, T. Tybell: Imaging of out-of-plane interfacial strain in epitaxial {P}b{T}i{O}_{ 3}/{S}r{T}i{O}3 thin films, Appl. Phys. Lett. 86, 092907 (2005) CrossRefGoogle Scholar
  67. H. Tabata, H. Tanaka, T. Kawai: Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties, Appl. Phys. Lett. 65, 1970–1972 (1994) CrossRefGoogle Scholar
  68. Y. Ishibashi, N. Ohashi, T. Tsurimi: Structural refinement of {X}-ray diffraction profile for artificial superlattices, Jpn. J. Appl. Phys. 39, 186–191 (2000) CrossRefGoogle Scholar
  69. O. Nakagawara, T. Shimata, T. Makino, S. Arai, H. Tabata, T. Kawai: Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition, Appl. Phys. Lett. 77, 3257–3259 (2000) CrossRefGoogle Scholar
  70. T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, T. Kawai: Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with ``asymmetric'' structure, J. Appl. Phys. 91, 2290–2294 (2002) CrossRefGoogle Scholar
  71. J. B. Neaton, K. M. Rabe: Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices, Appl. Phys. Lett. 82, 1586–1588 (2003) CrossRefGoogle Scholar
  72. K. Johnston, X. Huang, J. B. Neaton, K. M. Rabe: First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with inplane expansion, Phys. Rev. B 71, 100103 (2005) CrossRefGoogle Scholar
  73. A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Phase transitions and polarizations in epitaxial BaTiO3/SrTiO3 superlattices studied by second-harmonic generation, J. Appl. Phys. 93, 1180–1185 (2003) CrossRefGoogle Scholar
  74. S. Rios, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Orthorhombic strontium titanate in BaTiO3-SrTiO3 superlattices, J. Phys. Condens. Matter 15, L305 (2003) CrossRefGoogle Scholar
  75. H.-M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, D. P. Norton: The growth and properties of epitaxial {KN}b{O}3 thin films and {KN}b{O}3/{KT}a{O}3 superlattices, Appl. Phys. Lett. 68, 1488–1490 (1996) CrossRefGoogle Scholar
  76. J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming, L. A. Boatner: Antiferroelectric behavior in symmetric KNbO3/KTaO3 superlattices, Phys. Rev. Lett. 88, 097601 (2002) CrossRefGoogle Scholar
  77. M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, R. L. Migoni: Ferroelectric properties of KNbO3/KTaO3 superlattices by atomic-level simulation, J. Appl. Phys. 90, 4509–4519 (2001) CrossRefGoogle Scholar
  78. M. Sepliarsky, S. R. Phillpot, M. G. Stachiotty, R. L. Migoni: Ferroelectric phase transitions and dynamical behavior in KNbO3/KTaO3 superlattices by molecular-dynamics simulation, J. Appl. Phys. 91, 3165–3171 (2002) CrossRefGoogle Scholar
  79. J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, D. G. Schlom: Abrupt {P}b{T}i{O}3/{S}r{T}i{O}3 superlattices grown by reactive molecular beam epitaxy, Appl. Phys. Lett. 74, 2851–2853 (1999) CrossRefGoogle Scholar
  80. F. {Le Marrec}, R. Farhi, M. {El Marssi}, J. L. Dellis, M. G. Karkut: Ferroelectric PbTiO3/BaTiO3 superlattices: Growth anomalies and confined modes, Phys. Rev. B 61, R6447–R6450 (2000) CrossRefGoogle Scholar
  81. C. Bungaro, K. M. Rabe: Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles, Phys. Rev. B 65, 224106 (2002) CrossRefGoogle Scholar
  82. C. Bungaro, K. M. Rabe: Epitaxially strained [001]-(PbTiO3)1(PbZrO3)1 superlattice and PbTiO3 from first principles, Phys. Rev. B 69, 184101 (2004) CrossRefGoogle Scholar
  83. M. P. Warusawithana, E. V. Colla, J. N. Eckstein, M. B. Weissman: Artificial dielectric superlattices with broken inversion symmetry, Phys. Rev. Lett. 90, 036802 (2003) CrossRefGoogle Scholar
  84. H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, D. H. Lowndes: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature (London) 433, 395–399 (2005) CrossRefGoogle Scholar
  85. D. P. Norton, B. C. Chakoumakos, J. D. Budai, D. H. Lowndes, B. C. Sales, J. R. Thompson, D. K. Christen: Superconductivity in SrCuO2-BaCuO2 superlattices: {F}ormation of artificially-layered superconducting materials, Science 265, 2074–2077 (1994) CrossRefGoogle Scholar
  86. T. Tsurumi, T. Harigai, D. Tanaka, S.-M. Nam, H. Kakemoto, S. Wada, K. Saito: Artificial ferroelectricity in perovskite superlattices, Appl. Phys. Lett. 85, 5016–5018 (2004) CrossRefGoogle Scholar
  87. G. Rijnders, D. H. A. Blank: Build your own superlattice, Nature (London) 433, 369–370 (2005) CrossRefGoogle Scholar
  88. N. Sai, B. Meyer, D. Vanderbilt: Compositional inversion symmetry breaking in ferroelectric perovskites, Phys. Rev. Lett. 84, 5636–5639 (2000) CrossRefGoogle Scholar
  89. Y. Ogawa, H. Yamada, T. Ogasawara, T. Arima, H. Okamoto, M. Kawasaki, Y. Tokura: Nonlinear magneto-optical {Kerr} rotation of an oxide superlattice with artificially broken symmetry, Phys. Rev. Lett. 90, 217403 (2003) CrossRefGoogle Scholar
  90. M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, J.-M. Triscone: Unusual behavior of the ferroelectric polarization in {P}b{T}i{O}3/{S}r{T}i{O}3 superlattices, Phys. Rev. Lett. 95, 177601 (2005) CrossRefGoogle Scholar
  91. K. Ishikawa, K. Yoshikawa, N. Okada: Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles, Phys. Rev. B 37, 5852–5855 (1988) CrossRefGoogle Scholar
  92. B. Jiang, J. L. Peng, L. A. Bursill, W. L. Zhong: Size effects on ferroelectricity of ultrafine particles of PbTiO3, J. Appl. Phys. 87, 3462–3467 (2000) CrossRefGoogle Scholar
  93. W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H. M. Cheng, Z. H. Yang, L. X. Li: Phase transition in PbTiO3 ultrafine particles of different sizes, J. Phys. Condens. Matter 5, 2619–2624 (1993) CrossRefGoogle Scholar
  94. K. Uchino, E. Sadanaga, T. Hirose: Dependence of the crystal structure on particle size in barium titanate, J. Am. Ceram. Soc. 72, 1555 (1989) CrossRefGoogle Scholar
  95. S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z.-Q. Li, Y. Kawazoe: Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles, Phys. Rev. B 62, 3065–3070 (2000) CrossRefGoogle Scholar
  96. C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang: Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles, J. Am. Ceram. Soc. 123, 4344–4345 (2001) Google Scholar
  97. S. O'Brien, L. Brus, C. B. Murray: Synthesis of monodisperse nanoparticles of barium titanate: towards a generalized strategy of oxide nanoparticles synthesis, J. Am. Ceram. Soc. 123, 12085–12086 (2001) Google Scholar
  98. C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melnagilis, E. Williams, R. Ramesh: Scaling of ferroelectric properties in thin films, Appl. Phys. Lett. 75, 409 (1999) CrossRefGoogle Scholar
  99. C. S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, C. {Paz de Araujo}: Scaling of ferroelectric and piezoelectric properties in Pt/{S}r{B}i2{T}a2{O}9/Pt thin films, Appl. Phys. Lett. 75, 3874–3876 (1999) CrossRefGoogle Scholar
  100. M. Alexe, C. Harnagea, W. Erfurth, D. Hesse, U. G\ösele: 100-nm lateral size ferroelectric memory cells fabricated by electron-beam direct writing, Appl. Phys. A 70, 247 (2000) CrossRefGoogle Scholar
  101. M. Alexe, J. F. Scott, C. Curran, N. D. Zakharov, D. Hesse, A. Pignolet: Self-patterning nano-electrodes on ferroelectric thin films for gigabit memory applications, Appl. Phys. Lett. 73, 1592–1594 (1998) CrossRefGoogle Scholar
  102. M. Alexe, A. Gruverman, C. Harnagea, N. D. Zakharov, A. Pignolet, D. Hesse, J. F. Scott: Switching properties of self-assembled ferroelectric memory cells, Appl. Phys. Lett. 75, 1158–1160 (1999) CrossRefGoogle Scholar
  103. A. Seifert, A. Vojta, J. S. Speck, F. F. Lange: Microstructural instability in single-crystal thin films, J. Mater. Res. 11, 1470–1482 (1996) CrossRefGoogle Scholar
  104. I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, M. Alexe: Ferroelectric epitaxial nanocrystals obtained by a self-patterning method, Appl. Phys. Lett. 83, 2211–2213 (2003) CrossRefGoogle Scholar
  105. M. Dawber, I. Szafraniak, M. Alexe, J. F. Scott: Self-patterning of arrays of ferroelectric capacitors: {D}escription by theory of substrate mediated strain interactions, J. Phys. Condens. Matter 15, L667–L671 (2003) CrossRefGoogle Scholar
  106. A. Roelofs, T. Schneller, K. Szot, R. Waser: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity, Appl. Phys. Lett. 81, 5231–5233 (2002) CrossRefGoogle Scholar
  107. H. Nonomura, H. Fujisawa, M. Shimizu, H. Niu, K. Honda: Self-assembled PbTiO3 nano-islands prepared on SrTiO3 by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys. 42, 5918–5921 (2003) CrossRefGoogle Scholar
  108. M.-W. Chu, I. Szafraniak, R. Scholtz, C. Harnagea, D. Hesse, M. Alexe, U. G\ösele: Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites, Nature Mater. 3, 87–90 (2004) CrossRefGoogle Scholar
  109. Y. Luo, I. Szafraniak, N. D. Zakharov, V. Nagarajan, M. Steinhart, R. B. Wehrspohn, J. H. Wendorff, R. Ramesh, M. Alexe: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate, Appl. Phys. Lett. 83, 440–442 (2003) CrossRefGoogle Scholar
  110. F. D. Morrison, L. Ramsay, J. F. Scott: High aspect ratio piezoelectric strontium-bismuth-tantalate nanotubes, J. Phys. Condens. Matter 15, L527–L532 (2003) CrossRefGoogle Scholar
  111. D. D. Morrison, Y. Luo, I. Szafraniak, V. Nagarajan, R. B. Wehrspohn, M. Steinhart, J. H. Wendorff, N. D. Zakharov, E. D. Mishina, K. A. Vorotilov, A. S. Sigov, S. Nakabayashi, M. Alexe, R. Ramesh, J. F. Scott: Ferroelectric nanotubes, Rev. Adv. Mater. Sci. 4, 114–122 (2003) Google Scholar
  112. W. S. Yun, J. J. Urban, Q. Gu, H. Park: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy, Nano Lett. 2, 447–450 (2002) CrossRefGoogle Scholar
  113. J. J. Urban, W. S. Yun, Q. Gu, H. Park: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate, J. Am. Ceram. Soc. 124, 1186–1187 (2002) Google Scholar
  114. J. J. Urban, J. E. Spanier, L. Ouyang, W. S. Yun, H. Park: Single-crystalline barium titanate nanowires, Adv. Mater. 15, 423–426 (2003) CrossRefGoogle Scholar
  115. H. Fu, L. Bellaiche: Ferroelectricity in barium titanate quantum dots and wires, Phys. Rev. Lett. 91, 257601 (2003) CrossRefGoogle Scholar
  116. I. Naumov, L. Bellaiche, H. Fu: Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature (London) 432, 737–740 (2004) CrossRefGoogle Scholar
  117. G. Geneste, E. Bousquet, J. Junquera, P. Ghosez: Finite-size effects in BaTiO3 nanowires, Appl. Phys. Lett. 88, 112906 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Céline Lichtensteiger
    • 1
    Email author
  • Matthew Dawber
    • 1
  • Jean-Marc Triscone
    • 1
  1. 1.DPMC – University of GenevaGeneva 4Switzerland

Personalised recommendations