Advertisement

Analogies and Differences between Ferroelectrics and Ferromagnets

  • Nicola A. SpaldinEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 105)

Abstract

We describe the similarities and differences between ferromagnets – materials that have a spontaneous magnetization that is switchable by an applied magnetic field – and ferroelectrics, which have an analogous electric-field switchable electric polarization. After comparing the driving force for ion off-centering that causes the polarization in ferroelectrics with the physics of spin polarization that causes the magnetization of ferromagnets, we analyze the mechanisms of domain formation and resulting domain structures in both material classes. We describe the emerging technologies of ferroelectric and magnetoresistive random access memories, and discuss the behavior of magnetoelecric multiferroics, which combine ferromagnetism and ferroelectricity in the same phase.

Keywords

Domain Wall Electron Localization Function American Physical Society Ferroelectric Polarization Magnetostatic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Valasek: Piezoelectric and allied phenomena in rochelle salt, Phys. Rev. 17, 475 (1921) Google Scholar
  2. A. von Hippel: Ferroelectricity, domain structure, and phase transitions of barium titanate, Rev. Mod. Phys. 22, 221–237 (1950) Google Scholar
  3. R. S. Tebble, I. C. Skidmore, W. D. Corner: The {Barkhausen} effect, Proc. Phys. Soc. A 63, 739–761 (1950) Google Scholar
  4. R. E. Cohen: Origin of ferroelectricity in perovskite oxides, Nature 358, 136–138 (1992) Google Scholar
  5. R. E. Cohen: Theory of ferroelectrics: A vision for the next decade and beyond, J. Phys. Chem. Solids 61, 139–146 (2000) Google Scholar
  6. H. D. Megaw: Origin of ferroelectricity in barium titanate and other perovskite-type crystals, Acta Crystallogr. 5, 739–749 (1952) Google Scholar
  7. P. S. Halasyamani, K. R. Poeppelmeier: Non-centrosymmetric oxides, Chem. Mater. 10, 2753–2769 (1998) Google Scholar
  8. U. Opik, M. L. H. Pryce: Studies of the {J}ahn–{T}eller effect {I}: A survey of the static problem, Proc. Roy. Soc. A 238, 425–447 (1957) Google Scholar
  9. R. F. W. Bader: An interpretation of potential interaction constants in terms of low-lying excited states, Mol. Phys. 3, 137–151 (1960) Google Scholar
  10. I. B. Bersuker: Modern aspects of the {J}ahn–{T}eller theory and applications to molecular problems, Chem. Rev. 101, 1067–1114 (2001) Google Scholar
  11. J. K. Burdett: Use of the {J}ahn–{T}eller theorem in inorganic chemistry, Inorg. Chem. 20, 1959–1962 (1981) Google Scholar
  12. I. B. Bersuker: The {J}ahn–{T}eller Effect and Vibronic Interactions in Modern Chemistry (Plenum 1984) Google Scholar
  13. M. Atanasov, D. Reinen: Density functional studies on the lone pair effect of the trivalent group {V} elements: {I.} {Electronic} structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in {AX}_3 molecules ({A}={N} to {B}i; {X}={H}, and {F} to {I}), J. Phys. Chem. A 105, 450–5467 (2001) Google Scholar
  14. A. Filippetti, N. A. Hill: Coexistence of magnetism and ferroelectricity in perovskites, Phys. Rev. B 65, 195120 (2002) Google Scholar
  15. U. V. Waghmare, N. A. Spaldin, H. C. Kandpal, R. Seshadri: First principles indicators of metallicity and cation off-centricity in the {IV}-{VI} rock-salt chalcogenides of divalent {G}e, {S}n and {P}b, Phys. Rev. B 67, 125111 (2003) Google Scholar
  16. B. Silvi, A. Savin: Classification of chemical bonds based on topological analysis of electron localization functions, Nature 371, 683–685 (1994) Google Scholar
  17. Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata: Evidence for Pb-O covalency in tetragonal {PbTiO_3}, Phys. Rev. Lett. 87, 217601 (2001) Google Scholar
  18. R. E. Cohen, H. Krakauer: Electronic-structure studies of the differences in ferroelectric behavior of {B}a{T}i{O}_3 and {P}b{T}i{O}_3, Ferroelectrics 136, 65–83 (1992) Google Scholar
  19. A. M. Glazer: The classification of tilted octahedra in perovskites, Acta Crystallogr. B 28, 3384–3392 (1972) Google Scholar
  20. P. M. Woodward: Octahedral tilting in perovskite. {I}. {G}eometrical considerations, Acta Crystallogr. B 53, 32–43 (1997) Google Scholar
  21. P. M. Woodward: Octahedral tilting in perovskite. {II}. {S}tructure stabilizing forces, Acta Crystallogr. B 53, 44–66 (1997) Google Scholar
  22. B. B. {van Aken}, A. Meetsma, T. T. M. Palstra: Hexagonal {YMnO_3}, Acta Crystallogr. C 57, 230–232 (2001) Google Scholar
  23. G. V. Kozlov, A. A. Volkov, J. F. Scott, G. Feldkamp, J. Petzelt: Millimeter-wavelength spectroscopy of the ferroelectric phase transition in tris-sarcosine calcium chloride {[(CH_3NHCH_2COOH)_3CaCl_2]}, Phys. Rev. B 28, 255–261 (1983) Google Scholar
  24. W. Zhong, R. D. King-Smith, D. Vanderbilt: Giant {LO-TO} splittings in perovskite ferroelectrics, Phys. Rev. Lett. 72, 3618–3621 (1994) Google Scholar
  25. W. Zhong, D. Vanderbilt, K. Rabe: Phase-transitions in {B}a{T}i{O}_3 from first-principles, Phys. Rev. Lett. 73, 1861–1864 (1994) Google Scholar
  26. H. Schmid: Some Supplementing Comments on the Proceedings of MEIPIC-5 (Kluwer, Dordrecht 2004) Google Scholar
  27. D. J. Singh: Structure and energetics of antiferroelectric {P}b{Z}r{O}_3, Phys. Rev. B 52, 12559–12563 (1995) Google Scholar
  28. P. Ghosez, E. Cockayne, U. V. Waghmare, K. M. Rabe: Lattice dynamics of {B}a{T}i{O}_3, {P}b{T}i{O}_3, and {P}b{Z}r{O}_3: A comparative first-principles study, Phys. Rev. B 60, 836–843 (1999) Google Scholar
  29. G. O. Jones, P. A. Thomas: Investigation of the structure and phase transitions in the novel {A}-site substituted distorted perovskite compound {N}a0.5{B}i0.5{T}i{O}_3, Acta Crystallogr. B 58, 168–78 (2002) Google Scholar
  30. P. Weiss: L'hypothèse du champ moléculaire et la propriété ferromagnétique, J. Phys. 6, 661 (1907) Google Scholar
  31. E. C. Stoner: Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements, Philos. Mag. 15, 1018–34 (1933) Google Scholar
  32. J. B. Goodenough: Theory of the role of covalence in the perovskite-type manganites [{L}a{M}({II})]{M}n{O}_3, Phys. Rev. 100, 564–573 (1955) Google Scholar
  33. N. A. Spaldin: Magnetic Materials; Fundamentals and Device Applications (Cambridge Univ. Press, Cambridge 2003) Google Scholar
  34. E. A. Nesbitt: Ferromagnetic Domains, Technical report, Bell Telephone Laboratories (1962) Google Scholar
  35. C. Kittel, J. K. Galt: Ferromagnetic domain theory, Solid State Phys. 3, 437–564 (1956) Google Scholar
  36. S. Stemmer, S. K. Streiffer, F. Ernst, M. Rühle: Atomistic structure of \unit{90}{\degree} domain walls in ferroelectric {P}b{T}i{O}_3 thin films, Philos. Mag. A 71, 713–724 (1995) Google Scholar
  37. B. Meyer, D. Vanderbilt: {ıt Ab initio} study of ferroelectric domain walls in {P}b{T}i{O}_3, Phys. Rev. B 65, 104111–1–11 (2002) Google Scholar
  38. J. Padilla, W. Zhong, D. Vanderbilt: First-principles investigation of \unit{180}{\degree} domain walls in {B}a{T}i{O}_3, Phys. Rev. B 53, R5969–5973 (1996) Google Scholar
  39. G. Engdahl: Handbook of Giant Magnetostrictive Materials (Academic Press, New York 2000) Google Scholar
  40. O. Auciello, J. F. Scott, R. Ramesh: The physics of ferroelectric memories, Physics Today 51, 22–27 (1998) Google Scholar
  41. J. F. Scott: Ferroelectric Memories (Springer 2000) Google Scholar
  42. S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, M. Samant: Magnetically engineered spintronic sensors and memory, Proc. IEEE 91, 661–680 (2003) Google Scholar
  43. M. Julliére: Tunneling between ferromagnetic films, Phys. Lett. A 54, 225–226 (1975) Google Scholar
  44. J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett. 74, 3273–3276 (1995) Google Scholar
  45. H. Schmid: Multiferroic magnetoelectrics, Ferroelectrics 162, 317–338 (1994) Google Scholar
  46. M. Fiebig: Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38, R1–R30 (2005) Google Scholar
  47. N. A. Spaldin, M. Fiebig: The renaissance of magnetoelectric multiferroics, Science 309, 391–392 (2005) Google Scholar
  48. C. Ederer, N. A. Spaldin: Recent progress in first-principles studies of magnetoelectric multiferroics, Curr. Opin. Solid St. M. 9, 128–139 (2006) cond-mat/0512330 Google Scholar
  49. V. E. Wood, A. E. Austin: in Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach 1975) Google Scholar
  50. N. A. Hill: Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B 104, 6694–6709 (2000) Google Scholar
  51. N. A. Hill: Density functional studies of multiferroic magnetoelectrics, Annu. Rev. Mater. Res. 32, 1–37 (2002) Google Scholar
  52. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh: Epitaxial {B}i{F}e{O}_3 multiferroic thin film heterostructures, Science 299, 1719 (2003) Google Scholar
  53. S. M. Skinner: Magnetically ordered ferroelectric materials, IEEE Trans. Parts, Mater. Packag. PMP-6, 68–90 (1970) Google Scholar
  54. W. Brixel, J.-P. Rivera, A. Steiner, H. Schmid: Magnetic field induced magnetoelectric effects, ({ME})H, in the perovskites {P}b_2{C}o{WO}_6 and {P}b_2{F}e{T}a{O}_6, Ferroelectrics 79, 201–4 (1988) Google Scholar
  55. N. Lampis, P. Sciau, A. Geddo-Lehmann: Rietveld refinements of the paraelectric and ferroelectric structure of {P}b{F}e0.5{T}a0.5{O}_3, J. Phys. Condens. Matter 12, 2367–2378 (2000) Google Scholar
  56. N. Lampis, P. Sciau, A. Geddo-Lehmann: Rietveld refinements of the paraelectric and ferroelectric structure of {P}b{F}e0.5{N}b0.5{O}_3, J. Phys. Condens. Matter 11, 3489–3500 (1999) Google Scholar
  57. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura: Magnetic control of ferroelectric polarization, Nature 426, 55–58 (2003) Google Scholar
  58. P. Baettig, N. A. Spaldin: Ab initio prediction of a multiferroic with large polarization and magnetization, Appl. Phys. Lett. 86, 012505 (2005) Google Scholar
  59. M. Fiebig, V. Eremenko, I. E. Chupis (Eds.): Proceedings of the 5th International Workshop on Magnetoelectric Interaction Phenomena in Crystals (Kluwer, Dordrecht 2004) Google Scholar
  60. E. Ascher: Higher-order magnetoelectric effects, Philos. Mag. 17, 149–157 (1968) Google Scholar
  61. H. Grimmer: The forms of tensors describing magnetic and toroidal properties, Ferroelectrics 161, 181–189 (1994) Google Scholar
  62. H. Schmid: Magnetoelectric effects in insulating magnetic materials, in W. S. Weiglhoger, A. Lakhtakia (Eds.): Introduction to Complex Mediums for Optics and Electromagnetics (SPIE 2003) pp. 167–195 Google Scholar
  63. M. Fiebig, T. Lottermoser, D. Fr{\ö}hlich, A. V. Goltsev, R. V. Pisarev: Observation of coupled magnetic and electric domains, Nature 419, 818–820 (2002) Google Scholar
  64. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura: Magnetocapacitance effect in multiferroic {B}i{M}n{O}_3, Phys. Rev. B 67, 180401(R) (2003) Google Scholar
  65. E. Ascher, H. Rieder, H. Schmid, H. St{\ö}ssel: Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I, J. Appl. Phys. 37, 1404–1405 (1966) Google Scholar
  66. C. Ederer, N. A. Spaldin: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B 71, 060401(R) (2005) Google Scholar
  67. C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, W. J. James: The atomic structure of {BiFeO_3}, Solid State Commun. 7, 701–703 (1969) Google Scholar
  68. F. Kubel, H. Schmid: Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite {BiFeO_3}, Acta Crystallogr. B 46, 698–702 (1990) Google Scholar
  69. J. R. Teague, R. Gerson, W. J. James: Dielectric hysteresis in single crystal {BiFeO_3}, Solid State Commun. 8, 1073–1074 (1970) Google Scholar
  70. S. V. Kiselev, R. P. Ozerov, G. S. Zhdanov: Detection of magnetic order in ferroelectric {BiFeO_3} by neutron diffraction, Sov. Phys. Dokl. 7, 742–744 (1963) Google Scholar
  71. I. Sosnowska, T. {Peterlin-Neumaier}, E. Streichele: Spiral magnetic ordering in bismuth ferrite, J. Phys. C 15, 4835–4846 (1982) Google Scholar
  72. I. E. Dzyaloshinskii: Thermodynamic theory of ``weak'' ferromagnetism in antiferromagnetic substances, Sov. Phys. JETP 5, 1259–1272 (1957) Google Scholar
  73. T. Moriya: Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91–98 (1960) Google Scholar
  74. Y. F. Popov, A. K. Zvezdin, G. P. Vorob'ev, A. M. Kadomtseva, V. A. Murashev, D. N. Rakov: Linear magnetoelectric effect and phase transitions in bismuth ferrite, {BiFeO_3}, JETP Lett. 57, 69–73 (1993) Google Scholar
  75. C. Tabarez-Mu{{\~n}}oz, J.-P. Rivera, A. Bezinges, A. Monnier, H. Schmid: Measurement of the quadratic magnetoelectric effect on single crystalline {BiFeO_3}, Jpn. J. Appl. Phys. 24, 1051–1053 (1985) Google Scholar
  76. I. Sosnowska, W. Sch{\ä}fer, W. Kockelmann, K. H. Andersen, I. O. Troyanchuk: Crystal structure and spiral magnetic ordering in BiFeO3 doped with manganese, Appl. Phys. A 74, S1040–S1042 (2002) Google Scholar
  77. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, K. M. Rabe: First-principles study of spontaneous polarization in multiferroic {B}i{F}e{O}_3, Phys. Rev. B 71, 014113 (2005) Google Scholar
  78. J. {\'I}{{\~n}}iguez, L. Bellaiche, D. Vanderbilt: First-principles study of ({B}i{S}c{O}_3)1-x–({P}b{T}i{O}_3)_x alloys, Phys. Rev. B 67, 224107 (2003) Google Scholar
  79. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Cheng, J.-M. Liu, Z. G. Liu: Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84, 1731 (2004) Google Scholar
  80. K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, M. Okuyama: Jpn. J. Appl. Phys. 43, L647 (2004) Google Scholar
  81. K. Ueda, H. Tabata, T. Kawai: Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature, Appl. Phys. Lett. 75, 555–557 (1999) Google Scholar
  82. V. R. Palkar, J. John, R. Pinto: Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films, Appl. Phys. Lett. 80, 1628 (2002) Google Scholar
  83. K. Y. Yun, M. Noda, M. Okuyama: Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition, Appl. Phys. Lett. 83, 3981 (2003) Google Scholar
  84. W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, N. Mathur: Comment on `epitaxial {BiFeO_3} multiferroic thin film heterostructures', Science 307, 1203a (2005) Google Scholar
  85. F. Sugawara, S. Iida: New magnetic perovskites {B}i{M}n{O}_3 and {B}i{C}r{O}_3, J. Phys. Soc. Jpn. 20, 1529 (1965) Google Scholar
  86. F. Sugawara, S. Iida, Y. Syono, S. Akimoto: Magnetic properties and crystal distortions of {B}i{M}n{O}_3 and {B}i{C}r{O}_3, J. Phys. Soc. Jpn. 26, 1553–1558 (1968) Google Scholar
  87. V. A. Bokov, I. E. Myl'nikova, S. A. Kizhaev, M. F. Bryzhina, N. A. Grigorian: Structure and magnetic properties of {BiMnO_3}, Sov. Phys. Solid State 7, 2993–2994 (1966) Google Scholar
  88. N. A. Hill, K. M. Rabe: First principles investigation of ferromagnetism and ferroelectricity in {B}i{M}n{O}_3, Phys. Rev. B 59, 8759–69 (1999) Google Scholar
  89. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguichi, Y. Syono: Structure determination of ferromagnetic perovskite {B}i{M}n{O}_3, J. Solid State Chem. 145, 639–642 (1999) Google Scholar
  90. R. Seshadri, N. A. Hill: Visualizing the role of {Bi} 6s ``lone pairs'' in the off-center distortion in ferromagnetic {BiMnO_3}, Chem. Mater. 13, 2892–2899 (2001) Google Scholar
  91. A. {Moreira dos Santos}, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, C. N. R. Rao: Evidence for the likely occurence of magnetoferroelectricity in the simple perovskite {BiMnO_3}, Solid State Commun. 122, 49–52 (2002) Google Scholar
  92. A. {Moreira dos Santos}, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, C. N. R. Rao: Orbital ordering as the determinant for ferromagnetism in biferroic {BiMnO_3}, Phys. Rev. B 66, 064425 (2002) Google Scholar
  93. B. B. {van Aken}, T. T. M. Palstra, A. Filippetti, N. A. Spaldin: The origin of ferroelectricity in magnetoelectric {Y}{M}n{O}_3, Nature Mater. 3, 164–170 (2004) Google Scholar
  94. C. J. Fennie, K. M. Rabe: Ferroelectric transition in {YMnO_3} from first principles, Phys. Rev. B 72, 100103(R) (2005) Google Scholar
  95. H. L. Yakel, W. C. Koehler, E. F. Bertaut, E. F. Forrat: On the crystal structure of the manganese {(III)} trioxides of the heavy lanthanide and yttrium, Acta Crystallogr. 16, 957–962 (1963) Google Scholar
  96. G. A. Smolenskii, V. A. Bokov: Coexistence of magnetic and electric ordering in crystals, J. Appl. Phys. 35, 915–918 (1964) Google Scholar
  97. E. F. Bertaut, R. Pauthenet, M. Mercier: Proprietes magnetiques et structures du manganite d'yttrium, Phys. Lett. 7, 110–111 (1963) Google Scholar
  98. E. F. Bertaut, R. Pauthenet, M. Mercier: Sur des proprietes magnetiques du manganite d'yttrium, Phys. Lett. 18, 13 (1965) Google Scholar
  99. B. B. {van Aken}, A. Meetsma, T. T. M. Palstra: Hexagonal {LuMnO_3} revisited, Acta Crystallogr. E 57, i38 (2001) Google Scholar
  100. B. B. {van Aken}, A. Meetsma, T. T. M. Palstra: Hexagonal {LuMnO_3} revisited, Acta Crystallogr. E 57, i87 (2001) Google Scholar
  101. B. B. {van Aken}, A. Meetsma, T. T. M. Palstra: Hexagonal {LuMnO_3} revisited, Acta Crystallogr. E 57, i101 (2001) Google Scholar
  102. M. Isobe, N. Kimizuka, M. Nakamura, T. Mohri: Structure of {Y}b{M}n{O}_3, Acta Crystallogr. C 47, 423–425 (1991) Google Scholar
  103. N. Fujimura, T. Ishida, T. Yoshimura, T. Ito: Epitaxially grown {YMnO_3 film: New candidate for nonvolatile memory devices}, Appl. Phys. Lett. 69, 1011–1013 (1996) Google Scholar
  104. T. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Tobbens, J. A. Mydosh: Development of the high temperature phase of hexagonal manganites, Phys. Rev. B 69, 134108 (2004) Google Scholar
  105. K. Łukaszewicz, J. Karut-Kalicinska: X-ray investigations of the crystal structure and phase transitions of {YMnO_3}, Ferroelectrics 7, 81–82 (1974) Google Scholar
  106. T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, H. Takagi: Dielectric and magnetic anomalies and spin frustration in hexagonal {RM}n{O}_3 ({R=Y}, {Y}b and {L}u), Phys. Rev. B p. 104419 (2001) Google Scholar
  107. B. B. {van Aken}, A. Meetsma, Y. Tomioka, Y. Tokura, T. T. M. Palstra: Structural response to {O}*-{O}' and magnetic transitions in orthorhombic perovskites, Phys. Rev. B 66, 224414 (2002) Google Scholar
  108. B. B. {van Aken}: Ph.D. thesis, University of Groningen Google Scholar
  109. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, V. M. Laletin: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Phys. Rev. B 64, 214408 (2001) Google Scholar
  110. G. Srinivasan, E. T. Rasmussen, B. J. Levin, R. Hayes: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides, Phys. Rev. B 65, 134402 (2002) Google Scholar
  111. J. Ryu, A. {Vázquez Carazo}, K. Uchino, H.-E. Kim: Piezoelectric and magnetoelectric properties of lead zirconate titanate / {N}i-ferrite particulate composites, J. Electroceram. 7, 17–24 (2001) Google Scholar
  112. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. {Mohaddes-Ardabili}, T. Zhao, L. {Salamanca-Riba}, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh: Multiferroic BaTiO3-CoFe2O4 nanostructures, Science 303, 661–663 (2004) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations