Advertisement

First-Principles Studies of Ferroelectric Oxides

  • Karin M. RabeEmail author
  • Philippe Ghosez
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 105)

Abstract

The application of first-principles methods to the study of ferroelectric oxides is reviewed. While the main focus is on the perovskites, particularly the most-studied compounds BaTiO3, PbTiO3, and SrTiO3, other oxide families, including LiNbO3, layered perovskites, nitrites and nitrates, and electronic and magnetic ferroelectrics, are included. Results are presented for crystal structure, polarization and dielectric and piezoelectric coefficients. The identification of lattice instabilities through the computation of phonon dispersion relations for a high-symmetry reference phase is presented. Results at nonzero temperature, obtained through effective Hamiltonian and interatomic potential approaches, are given. Calculations for solid solutions, defects, thin films, superlattices and nanostructures are described. Challenges and prospects for future research are identified.

Keywords

Local Density Approximation Morphotropic Phase Boundary Perovskite Oxide Generalize Gradient Approximation Ferroelectric Perovskite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Vanderbilt: First-principles based modeling of ferroelectrics, Curr. Opin. Solid State Mater. Sci. 2, 701 (1997) Google Scholar
  2. L. Bellaiche: Piezoelectricity of ferroelectric perovskites from first principles, Curr. Opin. Solid State Mater. Sci. 6, 19 (2002) Google Scholar
  3. R. Resta: Ab initio simulation of the properties of ferroelectric materials, Modell. Simul. Mater. Sci. Eng. 11, R69 (2003) Google Scholar
  4. R. E. Cohen: Theory of ferroelectrics: {A} vision for the next decade and beyond, J. Phys. Chem. Solids 61, 139 (1999) Google Scholar
  5. C. H. Ahn, K. M. Rabe, J.-M. Triscone: Ferroelectricity at the nanoscale: {L}ocal polarization in oxide thin films and heterostructures, Science 303, 488 (2004) Google Scholar
  6. K. M. Rabe: Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices, Curr. Opin. Solid State Mater. Sci. 9, 122 (2005) Google Scholar
  7. M. Sepliarsky, A. Asthagiri, S. R. Phillpot, M. G. Stachiotti, R. L. Migoni: Atomic-level simulation of ferroelectricity in oxide materials, Curr. Opin. Solid State Mater. Sci. 9, 107 (2005) Google Scholar
  8. I. Ponomareva, I. I. Naumov, I. Kornev, H. Fu, L. Bellaiche: Modelling of nanoscale ferroelectrics from atomistic simulations, Curr. Opin. Solid State Mater. Sci. 9, 114 (2005) Google Scholar
  9. C. Ederer, N. A. Spaldin: Recent progress in first-principles studies of magnetoelectric multiferroics, Curr. Opin. Solid State Mater. Sci. 9, 128 (2005) Google Scholar
  10. I. A. Kornev, H. Fu, L. Bellaiche: Properties of ferroelectric ultrathin films from first principles, J. Mater. Sci. 41, 137 (2006) Google Scholar
  11. U. V. Waghmare, K. M. Rabe: Dielectric properties of simple and complex oxides from first principles, in A. A. Demkov, A. Navrotsky (Eds.): Materials Fundamentals of Gate Dielectrics (Springer, New York 2005) Google Scholar
  12. B. P. Burton, E. Cockayne, S. Tinte, U. V. Waghmare: First-principles-based simulations of relaxor ferroelectrics, Phase Trans. 79, 91 (2006) Google Scholar
  13. P. Ghosez, J. Junquera: First-principles modeling of ferroelectric oxide nanostructures, in M. Rieth, W. Schommers (Eds.): Handbook of Theoretical and Computational Nanotechnology, vol. 7 (ASP, Stevenson Ranch CA 2006) Chap. 13, pp. 623–728 Google Scholar
  14. M. Dawber, K. M. Rabe, J. F. Scott: Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77, 1083 (2005) Google Scholar
  15. R. M. Martin: Electronic Structure: {B}asic Theory and Practical Methods (University Press, Cambridge 2004) Google Scholar
  16. R. Dovesi, R. Orlando, C. Roetti, C. Pisani, V. R. Saunders: The periodic {H}artree–{F}ock method and its implementation in the {CRYSTAL} code, Phys. Stat. Sol. B 217, 63 (2000) Google Scholar
  17. H. Ishida, D. Wortmann, A. Liebsch: Electronic structure of {SrVO_3(001)} surfaces: {A} local density approximation plus dynamical mean-field theory calculation, Phys. Rev. B 73, 245421 (2006) Google Scholar
  18. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D. C. Allan: First-principles computation of material properties: The {ABINIT} software project, Comput. Mater. Sci. 25, 478 URL: http://www.abinit.org (2002) Google Scholar
  19. G. Kresse, J. Furthmüller: Efficient iterative schemes for \textit{ab initio} total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 URL: http://cms.mpi.univie.ac.at/vasp (1996) Google Scholar
  20. S. Baroni, A. {Dal Corso}, S. {de Gironcoli}, P. Giannozzi: Google Scholar
  21. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordej\'on, D. S\'anchez-Portal: The {SIESTA} method for \textit {ab initio} order-\textit{{N}} materials simulation, J. Phys. Condens. Matter 14, 2745 URL: http://www.uam.es/siesta/ (2002) Google Scholar
  22. P. Blaha, K. Schwarz, G. K. H. Medsen, D. Kvasnicka, J. Luitz: {WIEN2k}, An Augmented Plane-Wave + Local-Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria 2001) URL: http://www.wien2k.at Google Scholar
  23. V. R. Saunders, R. Dovesi, C. Roetti, M. Causa, N. M. Harrison, R. Orlando, C. M. Zicovich-Wilson: CRYSTAL'98 User's Manual, University di Torino, Torino (1998) Google Scholar
  24. M. T. Yin, M. L. Cohen: Theory of static structural properties, crystal stability, and phase transformations: Application to {Si} and {Ge}, Phys. Rev. B 26, 5668 (1982) Google Scholar
  25. R. P. Feynman: Forces in molecules, Phys. Rev. 56, 340 (1939) Google Scholar
  26. H. Hellmann: Einführung in die Quantenchemie (Deuticke, Leipzig 1937) Google Scholar
  27. O. H. Nielsen, R. M. Martin: Quantum-mechanical theory of stress and force, Phys. Rev. B 32, 3780 (1985) Google Scholar
  28. R. E. Cohen, H. Krakauer: Lattice dynamics and origin of ferroelectricity in {BaTiO_3}: {L}inearized-augmented-plane-wave total-energy calculations, Phys. Rev. B 42, 6416 (1990) Google Scholar
  29. R. E. Cohen: Origin of ferroelectricity in perovskite oxides, Nature 358, 136 (1992) Google Scholar
  30. R. D. {King-Smith}, D. Vanderbilt: A first-principles pseudopotential investigation of ferroelectricity in barium titanate, Ferroelectrics 136, 85 (1992) Google Scholar
  31. K. M. Rabe, U. V. Waghmare: Ferroelectric phase transitions: {A} first-principles approach, Ferroelectrics 164, 15 (1994) Google Scholar
  32. R. D. {King-Smith}, D. Vanderbilt: First-principles investigation of ferroelectricity in perovskite compounds, Phys. Rev. B 49, 5828 (1994) Google Scholar
  33. I. Grinberg, N. J. Ramer, A. M. Rappe: Accurate construction of transition metal pseudopotentials for oxides, AIP Conf. Proc. 582, 211 (2001) Google Scholar
  34. H. J. Monkhorst, J. D. Pack: Special points for {B}rillouin-zone integration, Phys. Rev. B 13, 5188 (1976) Google Scholar
  35. S. Tinte, M. G. Stachiotti, C. O. Rodriguez, D. L. Novikov, N. E. Christensen: Application of the generalized gradient approximation to ferroelectric perovskites, Phys. Rev. B 58, 11959 (1998) Google Scholar
  36. O. Dieguez, K. M. Rabe, D. Vanderbilt: First principles study of epitaxial strain in perovskites, Phys. Rev. B 72, 144101 (2005) Google Scholar
  37. P. Ghosez, X. Gonze, P. Lambin, J. P. Michenaud: {B}orn effective charges of barium titanate: {B}and-by-band decomposition and sensitivity to structural features, Phys. Rev. B 51, 6765 (1995) Google Scholar
  38. Z. Wu, R. E. Cohen, D. J. Singh: Comparing the weighted density approximation with the {LDA} and {GGA} for ground-state properties of ferroelectric perovskites, Phys. Rev. B 70, 104122 (2004) Google Scholar
  39. J. Junquera, M. Zimmer, P. Ordejon, P. Ghosez: First-principles calculation of the band offset at {BaO/BaTiO_3} and {SrO/SrTiO_3} interfaces, Phys. Rev. B 67, 155327 (2003) Google Scholar
  40. S. Piskunov, E. Heifets, R. I. Eglitis, G. Borstel: Bulk properties and electronic structure of {SrTiO_3}, {BaTiO_3}, {PbTiO_3} perovskites: {A}n ab initio {HF}/{DFT} study, Comput. Mater. Sci. 29, 165 (2004) Google Scholar
  41. J. Junquera: C\'alculos ab initio de propriedades electr\'onicas y estructurales de interfases con siluros y titanatos, {PhD} thesis, Universidad {A}ut\'onoma de {M}adrid, Madrid (2001) Google Scholar
  42. Z. Wu, R. E. Cohen: More accurate generalized gradient approximation for solids, Phys. Rev. B 73, 235116 (2006) Google Scholar
  43. N. Marzari, D. J. Singh: Dielectric response of oxides in the weighted density approximation, Phys. Rev. B 62, 12724 (2000) Google Scholar
  44. B. B. {van Aken}, T. T. M. Palstra, A. Filippetti, N. A. Spaldin: The origin of ferroelectricity in magnetoelectric {YMnO_3}, Nature Mater. 3, 164 (2004) Google Scholar
  45. C. J. Fennie, K. M. Rabe: Ferroelectric transition in YMnO3 from first principles, Phys. Rev. B 72, 100103 (2005) Google Scholar
  46. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, K. M. Rabe: First-principles study of spontaneous polarization in multiferroic {BiFeO_3}, Phys. Rev. B 71, 014113 (2005) Google Scholar
  47. A. Filippetti, N. A. Spaldin: Strong correlation effects in {B}orn effective charges, Phys. Rev. B 68, 045111 (2003) Google Scholar
  48. S. Dall'Olio, R. Dovesi, R. Resta: Spontaneous polarization as a {B}erry phase of the {H}artree–{F}ock wave function: {T}he case of {KNbO_3}, Phys. Rev. B 56, 10105 (1997) Google Scholar
  49. L. Fu, E. Yaschenko, L. Resca, R. Resta: {H}artree–{F}ock approach to macroscopic polarization: {D}ielectric constant and dynamical charges of {KNbO_3}, Phys. Rev. B 57, 6967 (1998) Google Scholar
  50. L. Fu, E. Yaschenko, L. Resca, R. Resta: {H}artree–{F}ock studies of surface properties of {BaTiO_3}, Phys. Rev. B 60, 2697 (1999) Google Scholar
  51. S. Piskunov, E. A. Kotonin, E. Heifets, J. Maier, R. I. Eglitis, G. Borstel: Hybrid {DFT} calculations of the atomic and electronic structure for {ABO_3} perovskite (001) surfaces, Surf. Sci. 575, 75 (2005) Google Scholar
  52. E. Heifets, E. Kotmin, V. A. Trepakov: Calculations for antiferrodistortive phase of {SrTiO_3} perovskite: {H}ybrid density-functional study, J. Phys. Condens. Matter 18, 4845 (2006) Google Scholar
  53. F. Cora: The performance of hybrid density-functionals in solid state chemistry: the case of {BaTiO_3}, Mol. Phys. 103, 2483 (2005) Google Scholar
  54. O. E. Kvyatdovskii, F. Karadaq, A. Mamedov, G. A. Zakharov: Cluster ab initio modeling of local lattice instability in relaxor ferroelectrics, Phys. Solid State 46, 1717 (2004) Google Scholar
  55. M. D. Johannes, D. J. Singh: Crystal structure and electric field gradients of {PbZrO_3} from density-functional calculations, Phys. Rev. B 71, 21 (2005) Google Scholar
  56. R. D. {King-Smith}, D. Vanderbilt: Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993) Google Scholar
  57. D. Vanderbilt, R. D. {King-Smith}: Electric polarization as a bulk quantity and its relation to surface charge, Phys. Rev. B 48, 4442 (1993) Google Scholar
  58. R. Resta: Macroscopic polarization in crystalline dielectrics: {T}he geometric phase approach, Rev. Mod. Phys. 66, 899 (1994) Google Scholar
  59. I. Souza, J. \`I{\~n}iguez, D. Vanderbilt: First-principles approach to insulators in finite electric fields, Phys. Rev. Lett. 89, 117602 (2002) Google Scholar
  60. P. Umari, A. Pasquarello: Ab initio molecular dynamics in a finite homogeneous electric field, Phys. Rev. Lett. 89, 157602 (2002) Google Scholar
  61. I. Souza, J. \`I{\~n}iguez, D. Vanderbilt: Dynamics of {B}erry-phase polarization in time-dependent electric fields, Phys. Rev. B 69, 085106 (2004) Google Scholar
  62. O. Dieguez, D. Vanderbilt: First-principles calculations for insulators at constant polarization, Phys. Rev. Lett. 96, 056401 (2006) Google Scholar
  63. X. Wang, D. Vanderbilt: First-principles perturbative computation of phonon properties of insulators in finite electric fields, Phys. Rev. B 74, 054304 (2006) Google Scholar
  64. N. Sai, K. M. Rabe, D. Vanderbilt: Theory of structural response to macroscopic electric fields in ferroelectric systems, Phys. Rev. B 66, 104108 (2002) Google Scholar
  65. I. I. Naumov, H. Fu: Phonon structure in {SrTiO_3} under finite electric fields: {F}irst-principles density-functional approach, Phys. Rev. B 72, 012304 (2005) Google Scholar
  66. H. Fu, L. Bellaiche: First-principles determination of electromechanical responses of solids under finite electric fields, Phys. Rev. Lett. 91, 057601 (2003) Google Scholar
  67. F. Bernardini, V. Fiorentini: Electronic dielectric constants of insulators calculated by the polarization method, Phys. Rev. B 58, 15292 (1998) Google Scholar
  68. S. Baroni, P. Giannozzi, A. Testa: Green's-function approach to linear response in solids, Phys. Rev. Lett. 58, 1861 (1987) Google Scholar
  69. X. Gonze: First-principles responses of solids to atomic displacement and homogeneous electric fields: {I}mplementation of a conjugate-gradient algorithm, Phys. Rev. B 55, 10337 (1997) Google Scholar
  70. X. Gonze, C. Lee: Dynamical matrices, {B}orn effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, 10355 (1997) Google Scholar
  71. S. Baroni, S. {de Gironcoli}, A. {Dal Corso}, P. Giannozzi: Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001) Google Scholar
  72. X. Gonze, D. C. Allan, M. P. Teter: Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional theory, Phys. Rev. Lett. 68, 3603 (1992) Google Scholar
  73. R. Yu, H. Krakauer: Linear-response calculations within the linearized augmented plane-wave method, Phys. Rev. B 49, 4467 (1994) Google Scholar
  74. D. R. Hamann, X. Wu, K. M. Rabe, D. Vanderbilt: Metric tensor formulation of strain in density-functional perturbation theory, Phys. Rev. B 71, 035117 (2005) Google Scholar
  75. D. R. Hamann, X. Wu, K. M. Rabe, D. Vanderbilt: Erratum: Metric tensor formulation of strain in density-functional perturbation theory, Phys. Rev. B 72, 079901E (2005) Google Scholar
  76. D. R. Hamann, K. M. Rabe, D. Vanderbilt: Generalized-gradient-functional treatment of strain in density-functional perturbation theory, Phys. Rev. B 72, 033102 (2005) Google Scholar
  77. P. Ghosez, X. Gonze: Band-by-band decompositions of the {B}orn effective charges, J. Phys. Condens. Matter 12, 9179–9188 (2000) Google Scholar
  78. X. Wu, D. Vanderbilt, D. R. Hamann: Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory, Phys. Rev. B 72, 035105 (2005) Google Scholar
  79. X. Gonze: Perturbation expansion of variational principles at arbitrary order, Phys. Rev. A 52, 1086 (1995) Google Scholar
  80. X. Gonze: Adiabatic density-functional perturbation theory, Phys. Rev. A 52, 1096 (1995) Google Scholar
  81. R. W. Nunes, X. Gonze: Phys. Rev. B 63, 155107 (2001) Google Scholar
  82. M. Veithen, X. Gonze, P. Ghosez: Nonlinear optical susceptibilities, {R}aman efficiencies, and electro-optic tensors from first-principles density-functional perturbation theory, Phys. Rev. B 71, 125107 (2005) Google Scholar
  83. M. Veithen, X. Gonze, P. Ghosez: First-principles study of the electro-optic effect in ferroelectric oxides, Phys. Rev. Lett. 93, 187401 (2004) Google Scholar
  84. M. Veithen, P. Ghosez: Temperature dependence of the electro-optic tensor and refractive indices of {BaTiO_3} from first principles, Phys. Rev. B 71, 132101 (2005) Google Scholar
  85. S. A. Prosandeev, U. Waghmare, I. Levin, J. Maslar: First-order {R}aman spectra of {AB'1/2B1/2O_3} double perovskites, Phys. Rev. B 71, 214307 (2005) Google Scholar
  86. A. Garcia, D. Vanderbilt: First-principles study of stability and vibrational properties of tetragonal {PbTiO_3}, Phys. Rev. B 54, 3817 (1996) Google Scholar
  87. C. J. Fennie, K. M. Rabe: First-principles investigation of ferroelectricity in epitaxially strained {Pb_2TiO_4}, Phys. Rev. B 71, 100102 (2005) Google Scholar
  88. U. Waghmare, M. H. F. Sluiter, T. Kimura, T. Goto, Y. Kawazoe: A lead-free high {T_\uc} ferroelectric {BaTi_2O_5}: {A} first-principles study, Appl. Phys. Lett. 84, 4917 (2004) Google Scholar
  89. D. J. Singh: Structure and energetics of antiferroelectric {PbZrO_3}, Phys. Rev. B 52, 12559 (1995) Google Scholar
  90. A. Zunger, S. H. Wei, L. G. Ferreira, J. E. Bernard: Special quasirandom structures, Phys. Rev. Lett. 65, 353 (1990) Google Scholar
  91. K. M. Rabe, J. D. Joannopoulos: Ab initio determination of a structural phase transition temperature, Phys. Rev. Lett. 59, 570 (1987) Google Scholar
  92. K. M. Rabe, J. D. Joannopoulos: Theory of the structural phase transition of {GeTe}, Phys. Rev. B 36, 6631 (1987) Google Scholar
  93. K. M. Rabe, U. V. Waghmare: First-principles model {H}amiltonians for ferroelectric phase transitions, Ferroelectrics 136, 147 (1992) Google Scholar
  94. W. Zhong, D. Vanderbilt, K. M. Rabe: Phase transitions in {BaTiO_3} from first principles, Phys. Rev. Lett. 73, 1861 (1994) Google Scholar
  95. W. Zhong, D. Vanderbilt, K. M. Rabe: First-principles theory of ferroelectric phase transitions for perovskites: the case of {BaTiO_3}, Phys. Rev. B 52, 6301 (1995) Google Scholar
  96. K. M. Rabe, U. V. Waghmare: Ferroelectric phase transitions from first principles, J. Phys. Chem. Solids 57, 1397 (1996) Google Scholar
  97. U. V. Waghmare, K. M. Rabe: Ab initio statistical mechanics of the ferroelectric phase transition in {PbTiO_3}, Phys. Rev. B 55, 6161 (1997) Google Scholar
  98. L. Bellaiche, A. Garcia, D. Vanderbilt: Finite-temperature properties of {Pb(Zr1-xTi_x)O_3} alloys from first principles, Phys. Rev. Lett. 84, 5427 (2000) Google Scholar
  99. B. P. Burton, E. Cockayne, U. V. Waghmare: Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lengthscale for polar nanoregions, Phys. Rev. B 72, 064113 (2005) Google Scholar
  100. P. Ghosez, K. M. Rabe: A microscopic model of ferroelectricity in stress-free {PbTiO_3} ultrathin films, Appl. Phys. Lett. 76, 2767 (2000) Google Scholar
  101. I. I. Naumov, L. Bellaiche, H. Fu: Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature 432, 737 (2004) Google Scholar
  102. I. Kornev, H. Fu, L. Bellaiche: Ultrathin films of ferroelectric solid solutions under residual depolarizing field, Phys. Rev. Lett 93, 196104 (2004) Google Scholar
  103. I. Ponomareva, I. I. Naumov, I. Kornev, H. Fu, L. Bellaiche: Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures, Phys. Rev. B 72, 140102 (2005) Google Scholar
  104. I. Ponomareva, I. I. Naumov, L. Bellaiche: Low-dimensional ferroelectrics under different electrical and mechanical boundary conditions: Atomistic simulations, Phys. Rev. B 72, 214118 (2005) Google Scholar
  105. B.-K. Lai, I. Ponomareva, I. I. Naumov, I. A. Kornev, H. Fu, L. Bellaiche, G. J. Salamo: Electric-field-induced domain evolution in ferroelectric ultrathin films, Phys. Rev. Lett. 96, 137602 (2006) Google Scholar
  106. I. Ponomareva, L. Bellaiche: Influence of the growth direction on properties of ferroelectric ultrathin films, Phys. Rev. B 74, 064102 (2006) Google Scholar
  107. S. Prosandeev, I. Ponomareva, I. Kornev, I. I. Naumov, L. Bellaiche: Controlling toroidal moment by means of an inhomogeneous static field: {A}n ab initio study, Phys. Rev. Lett. 96, 237601 (2006) Google Scholar
  108. H. Bilz, G. Benedek, A. Bussmann-Holder: Theory of ferroelectricity: {T}he polarizability model, Phys. Rev. B 35, 4840 (1987) Google Scholar
  109. M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, R. L. Migoni: Long-ranged ferroelectric interactions in perovskite superlattices, Phys. Rev. B 64, R060101 (2001) Google Scholar
  110. S. Tinte, M. G. Stachiotti, M. Sepliarsky, R. L. Migoni, C. O. Rodriguez: Atomistic modeling of {BaTiO_3} based on first-principles calculations, J. Phys. Condens Matter 11, 9679 (1999) Google Scholar
  111. M. Sepliarsky, Z. Wu, A. Asthagiri, R. E. Cohen: Atomistic model potential for {PbTiO_3} and {PMN} by fitting first principles results, Ferroelectrics 501, 55 (2004) Google Scholar
  112. M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, R. L. Migoni: Ferroelectric properties of {KNbO_3/KTaO-3} superlattices by atomic-level simulation, J. Appl. Phys. 90, 4509 (2001) Google Scholar
  113. I. Grinberg, V. R. Cooper, A. M. Rappe: Relationship between local structure and phase transitions of a disordered solid solution, Nature 419, 909 (2002) Google Scholar
  114. Y. H. Shin, V. R. Cooper, I. Grinberg, A. M. Rappe: Development of a bond-valence molecular-dynamics model for complex oxides, Phys. Rev. B 71, 054104 (2005) Google Scholar
  115. A. V. Postnikov, T. Neumann, G. Borstel: Phonon properties of {KNbO_3} and {KTaO_3} from first-principles calculations, Phys. Rev. B 50, 758 (1994) Google Scholar
  116. S. V. Halilov, M. Fornari, D. J. Singh: Lattice instabilities in {(Pb,Cd)TiO_3} alloys, Appl. Phys. Lett. 81, 3443 (2002) Google Scholar
  117. P. Ghosez, E. Cockayne, U. V. Waghmare, K. M. Rabe: Lattice dynamics of {{BaTiO_3}, {PbTiO_3}, and {PbZrO_3}}: {A} comparative first-principles study, Phys. Rev. B 60, 836 (1999) Google Scholar
  118. R. Khenata, M. Sahnoun, H. Baltache, M. Re, A. H. Rashek, N. Illes, B. Bouhafs: First-principles calculations of structural, electronic and optical properties of {BaTiO_3} and {BaZrO_3} under hydrostatic pressure, Solid State Commun. 136, 120 (2005) Google Scholar
  119. R. Terki, H. Feraoun, G. Bertrand, H. Aourag: Full potential calculations of structural, elastic and electronic properties of {BaZrO_3} and {SrZrO_3}, Phys. Stat. Sol. B 242, 1054 (2005) Google Scholar
  120. G. Fabricus, E. L. {Peltzer y Blanca}, C. O. Rodriguez, A. P. Ayala, P. {de la Presa}, A. {Lopez Garcia}: Electronic structure of cubic {SrHfO_3}: {F}erroelectric stability and detailed comparison with {SrTiO_3}, Phys. Rev. B 55, 164 (1997) Google Scholar
  121. R. V. Shpanchenko, V. V. Chernaya, A. A. Tsirlin, P. S. Chizhov, D. E. Sklovsky, E. V. Antipov, E. P. Khlybov, V. Pomjakushin, A. M. Balagurov, J. E. Medvedeva, E. E. Kaul, C. Geibel: Synthesis, structure and properties of new perovskite {PbVO_3}, Chem. Mater. 16, 3267 (2004) Google Scholar
  122. A. A. Belik, M. Azuma, T. Saito, Y. Shimakawa, M. Takano: Crystallographic features and tetragonal phase stability of {PbVO_3}, a new member of {PbTiO_3} family, Chem. Mater 17, 269 (2005) Google Scholar
  123. P. Baettig, C. F. Schelle, R. LeSar, U. V. Waghmare, N. A. Spaldin: Theoretical prediction of new high-performance lead-free piezoelectrics, Chem. Mater. 17, 1376 (2005) Google Scholar
  124. S. V. Halilov, M. Fornari, D. J. Singh: Lattice instabilities and ferroelectricity in AScO3 perovskite alloys, Phys. Rev. B 69, 174107 (2004) Google Scholar
  125. W. Zhong, D. Vanderbilt: Competing structural instabilities in perovskites, Phys. Rev. Lett. 74, 2587 (1995) Google Scholar
  126. C. Lasota, C. Z. Wang, R. C. Yu, H. Krakauer: Ab initio linear response study of {SrTiO_3}, Ferroelectrics 194, 109 (1997) Google Scholar
  127. P. Ghosez, D. Desquesnes, X. Gonze, K. M. Rabe: First-principles study of lattice instabilities in {Ba_xSr1-xTiO_3}, in R. E. Cohen (Ed.): Fundamental Physics of Ferroelectrics 2000, AIP Conference Proceedings 535 (American Institute of Physics, Woodbury, New York 2000) pp. 102–110 Google Scholar
  128. N. Sai, D. Vanderbilt: First-principles study of ferroelectric and antiferrodistortive instabilities in tetragonal {SrTiO_3}, Phys. Rev. B 62, 13942 (2000) Google Scholar
  129. K. Uchida, S. Tsuneyuki, T. Schimizu: First-principles calculations of carrier-doping effects in {SrTiO_3}, Phys. Rev. B 68, 174107 (2003) Google Scholar
  130. G. Shirane, H. Danner, P. Pepinsky: Neutron diffraction study of orthorhombic {BaTiO_3}, Phys. Rev. 105, 856 (1957) Google Scholar
  131. F. Jona, G. Shirane: Ferroelectric Crystals (Dover, New York 1993) Google Scholar
  132. S. Tinte, K. M. Rabe, D. Vanderbilt: Anomalous enhancement of tetragonality in {PbTiO_3} induced by negative pressure, Phys. Rev. B 68, 144105 (2003) Google Scholar
  133. C. Ederer, N. A. Spaldin: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics, Phys. Rev. Lett. 95, 257601 (2005) Google Scholar
  134. J. \`I{\~n}iguez, D. Vanderbilt, L. Bellaiche: First-principles study of {(BiScO3)1-x–(PbTiO_3)x} piezoelectric alloys, Phys. Rev. B 67, 224107 (2003) Google Scholar
  135. W. Cochran: Crystal stability and the theory of ferroelectricity, Adv. Phys. 9, 387 (1960) Google Scholar
  136. P. W. Anderson: in G. Skanavi (Ed.): Fizika Dielectrikov (Akad. Nauk, Moscow 1960) Google Scholar
  137. K. M. Rabe: Lattice Instabilities of Complex Perovskite Oxides from First Principles, Computer Simulation Studies in Condensed Matter Physics {XVI}, Springer Proceedings in Physics (Springer, New York 2003) Google Scholar
  138. W. A. Harrison: Electronic Structure and the Properties of Solids (Dover, New York 1980) Google Scholar
  139. V. V. Nemoshkalenko, A. N. Timoshevskii: The peculiarities of the electronic structure of {BaTiO3 in the ATiO3 (A = Ca, Sr, Ba) series}, Phys. Stat. Sol. B 127, 163 (1985) Google Scholar
  140. L. T. Hudson, R. L. Kurtz, S. W. Robey, D. Temple, R. L. Stockbauer: Photoelectron spectroscopic study of the valence and core-level electronic structure of {BaTiO_3}, Phys. Rev. B 47, 1174 (1994) Google Scholar
  141. F. M. Michel-Calendini, H. Chermette, J. Weber: Molecular orbital studies of {ABO3} perovskites by the {SCF-MS-Xα} method: local densities of states, chemical bonding and optical transitions, J. Phys. C 13, 1427 (1980) Google Scholar
  142. W. Zhong, R. D. {King-Smith}, D. Vanderbilt: Giant {LO–TO} splittings in perovskite ferroelectrics, Phys. Rev. Lett. 72, 3618 (1994) Google Scholar
  143. Y. X. Wang, W. L. Zhong, C. L. Wang, P. L. Zhang: First-principles study of the electronic structure of {NaTaO_3}, Solid State Commun. 120, 137 (2001) Google Scholar
  144. M. Posternak, R. Resta, A. Baldereschi: Role of covalent bonding in the polarization of perovskite oxides: {T}he case of {KNbO_3}, Phys. Rev. B 50, 8911 (1994) Google Scholar
  145. R. Seshadri, N. A. Hill: Visualizing the role of {B}i {6s} lone pairs in the off-center distortion in ferromagnetic {BiMnO_3}, Chem. Mater. 13, 2892 (2001) Google Scholar
  146. P. Ghosez, X. Gonze, J.-P. Michenaud: Coulomb interaction and ferroelectric instability of {BaTiO_3}, Europhys. Lett. 33, 713 (1996) Google Scholar
  147. G. A. Samara: Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: {PbTiO_3} and {BaTiO_3}, Ferroelectrics 2, 277 (1971) Google Scholar
  148. P. Ghosez, J.-P. Michenaud, X. Gonze: Dynamical effective charges: {T}he case of {ABO_3} compounds, Phys. Rev. B 58, 6224 (1998) Google Scholar
  149. J. D. Axe: Apparent ionic charges and vibrational eigenmodes of BaTiO3 and other perovskites, Phys. Rev. 157, 429 (1967) Google Scholar
  150. R. Resta, M. Posternak, A. Baldereschi: Towards a quantum theory of polarization in ferroelectrics: {T}he case of {KNbO_3}, Phys. Rev. Lett. 70, 1010 (1993) Google Scholar
  151. R. Yu, H. Krakauer: First-principles determination of chain-structure instability in {KNbO_3}, Phys. Rev. Lett. 74, 4067 (1995) Google Scholar
  152. F. Detraux, P. Ghosez, X. Gonze: Anomalously large {B}orn effective charges in cubic {WO_3}, Phys. Rev. B 56, 983 (1997) Google Scholar
  153. P. Ghosez, X. Gonze, J. P. Michenaud: First-principles calculations of dielectric and effective charge tensors in barium titanate, Ferroelectrics 153, 91 (1994) Google Scholar
  154. T. Mitsui, S. Nomura, M. Adachi, J. Harada, T. Ikeda, E. Nakamura, E. Sawaguchi, T. Shigenari, Y. Shiozagi, J. Tatsuzaki, K. Toyoda, T. Yamada, K. Gesi, Y. Marita, M. Marutake, T. Shiosaki, K. Wakino: Oxides, {L}andolt–{B}\örnstein Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 16, Pt. A (Springer, Berlin 1981) Google Scholar
  155. T. Mitsui, M. Adachi, Y. Akishige, K. Deguchi, J. Harada, T. Ikeda, M. Okuyama, E. Sawaguchi, Y. Shiozaki, K. Toyoda, T. Yamada, K. Gesi, T. Hikita, Y. Makita, T. Shigenari, I. Tatsuzaki, T. Yahi: Oxides, Landolt–B\örnstein Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 28, Pt. A (Springer, Berlin 1990) Google Scholar
  156. G. S\'aghi-Szab\'o, R. E. Cohen, H. Krakauer: First-principles study of piezoelectricity in {PbTiO_3}, Phys. Rev. Lett. 80, 4321 (1998) Google Scholar
  157. C.-Z. Wang, R. Yu, H. Krakauer: Polarization dependence of {B}orn effective charge and dielectric constant in {KNbO_3}, Phys. Rev. B 54, 11161 (1996) Google Scholar
  158. R. Pick, M. H. Cohen, R. M. Martin: Microscopic theory of force constants in the adiabatic approximation, Phys. Rev. B 1, 910 (1970) Google Scholar
  159. P. Gianozzi, S. {de Gironcoli}, P. Pavone, S. Baroni: Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43, 7231 (1991) Google Scholar
  160. C. Kittel: Introduction to Solid State Physics, 7 ed. (Wiley, New York 1996) Google Scholar
  161. P. Ghosez, J.-P. Michenaud, X. Gonze: Lattice dynamics and ferroelectric instability of barium titanate, Ferroelectrics 194, 39 (1997) Google Scholar
  162. G. Geneste, E. Bousquet, J. Junquera, P. Ghosez: Finite-size effects in {BaTiO_3} nanowires, Appl. Phys. Lett. 88, 112906 (2006) Google Scholar
  163. E. Cockayne, P. Ghosez, K. M. Rabe: private communication Google Scholar
  164. A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, J. M. Kiat: Combined theoretical and experimental study of the low-temperature properties of {BaZrO_3}, Phys. Rev. B 72, 205104 (2005) Google Scholar
  165. J. W. Bennett, I. Grinberg, A. M. Rappe: Effect of symmetry lowering on the dielectric response of {BaZrO_3}, Phys. Rev. B 73, 180102 (2006) Google Scholar
  166. R. A. Cowley: Lattice dynamics and phase transitions of {SrTiO_3}, Phys. Rev. 134, A981 (1964) Google Scholar
  167. K. Leung, E. Cockayne, A. F. Wright: Effective {H}amiltonian study of {PbZr0.95Ti0.05O_3}, Phys. Rev. B 65, 214111 (2002) Google Scholar
  168. U. V. Waghmare, K. M. Rabe: Lattice instabilities, anharmonicity and phase transitions in PbZrO3 from first principles, Ferroelectrics 194, 135 (1997) Google Scholar
  169. M. Fornari, D. J. Singh: Possible coexistence of rotational and ferroelectric lattice distortions in rhombohedral {PbZr_xTi1-xO_3}, Phys. Rev. B 63, 092101 (2001) Google Scholar
  170. E. Cockayne, B. P. Burton: Phonons and static dielectric constant in {CaTiO_3} from first principles, Phys. Rev. B 62, 3735 (2000) Google Scholar
  171. I. Grinberg, A. M. Rappe: Silver solid solution piezoelectrics, Appl. Phys. Lett. 85, 1760 (2004) Google Scholar
  172. Z. Wu, R. E. Cohen: Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in {PbTiO_3}, Phys. Rev. Lett. 95, 037601 (2005) Google Scholar
  173. I. A. Kornev, L. Bellaiche, P. Bouvier, P. E. Janolin, B. Dkhil, J. Kreisel: Ferroelectricity of perovskites under pressure, Phys. Rev. Lett. 95, 196804 (2005) Google Scholar
  174. I. A. Kornev, L. Bellaiche: The nature of ferroelectricity under pressure cond-mat/0608530 Google Scholar
  175. S. Tinte, J. \`I{\~n}iguez, K. M. Rabe, D. Vanderbilt: Quantitative analysis of the first-principles effective {H}amiltonian approach to ferroelectric perovskites, Phys. Rev. B 67, 064106 (2003) Google Scholar
  176. J. \`I{\~n}iguez, D. Vanderbilt: First-principles study of the temperature-pressure phase diagram of {BaTiO_3}, Phys. Rev. Lett. 89, 115503 (2002) Google Scholar
  177. N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films, Phys. Rev. Lett. 80, 1988 (1998) Google Scholar
  178. O. Dieguez, S. Tinte, A. Antons, C. Bungaro, J. B. Neaton, K. M. Rabe, D. Vanderbilt: Ab initio study of the phase diagram of epitaxial {BaTiO_3}, Phys. Rev. B 69, 212101 (2004) Google Scholar
  179. A. Antons, J. B. Neaton, K. M. Rabe, D. Vanderbilt: Tunability of the dielectric response of epitaxially strained {SrTiO_3} from first principles, Phys. Rev. B 71, 024102 (2005) Google Scholar
  180. H. N. Lee, S. M. Nakhmanson, M. F. Chisholm, H. M. Christen, K. M. Rabe, D. Vanderbilt, D. H. Lowndes: Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics, {P}hys. Rev. Lett. 98, 217602 (2007) Google Scholar
  181. X. Gonze, P. Ghosez, R. W. Godby: Density-polarization functional theory of the response of a periodic insulating solid to an electric field, Phys. Rev. Lett. 74, 4035 (1995) Google Scholar
  182. P. Ghosez, X. Gonze, R. W. Godby: The long wavelength behavior of the exchange-correlation kernel in the {K}ohn–{S}ham theory of periodic systems, Phys. Rev. B 56, 12811 (1997) Google Scholar
  183. E. Cockayne: First-principles calculations of the dielectric properties of perovskite-type materials, J. Eur. Ceram. Soc. 23, 2375 (2003) Google Scholar
  184. D. Vanderbilt: Berry-phase theory of proper piezoelectric response, J. Phys. Chem. Solids 61, 147 (2000) Google Scholar
  185. C. Bungaro, K. M. Rabe: Epitaxially strained {[001](PbTiO_3)_1(PbZrO_3)_1} superlattice and {PbTiO_3} from first principles, Phys. Rev. B 69, 184101 (2004) Google Scholar
  186. Z. Wu, H. Krakauer: First-principles calculations of piezoelectricity and polarization rotation in {Pb(Zr0.5Ti0.5)O_3}, Phys. Rev. B 68, 014112 (2003) Google Scholar
  187. H. Fu, R. E. Cohen: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature 403, 281 (2000) Google Scholar
  188. L. Bellaiche, A. Garcia, D. Vanderbilt: Electric-field induced polarization paths in {Pb(Zr1-xTi_x)O_3} alloys, Phys. Rev. B 64, 060103 (2001) Google Scholar
  189. S. E. Park, T. E. Shrout: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82, 1804 (1997) Google Scholar
  190. J. B. Neaton, K. M. Rabe: Theory of polarization enhancement in epitaxial {BaTiO_3/SrTiO_3} superlattices, Appl. Phys. Lett. 82, 1586 (2003) Google Scholar
  191. M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, J.-M. Triscone: Unusual behavior of ferroelectric polarization in {PbTiO_3/SrTiO_3} superlattices, Phys. Rev. Lett. 95, 177601 (2005) Google Scholar
  192. S. Rios, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Orthorhombic strontium titanate in {BaTiO3–SrTiO3} superlattices, J. Phys. Condens. Matter 15, L305 (2003) Google Scholar
  193. K. Johnston, X. Y. Huang, J. B. Neaton, K. M. Rabe: First-principles study of symmetry lowering and polarization in {BaTiO_3/SrTiO_3} superlattices with in-plane expansion, Phys. Rev. B 71, 100103 (2005) Google Scholar
  194. R. Car, M. Parrinello: Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471 (1985) Google Scholar
  195. V. Srinivasan, R. Gebauer, R. Resta, R. Car: {{PbTiO_3}} at finite temperature, in P. K. Davies, D. J. Singh (Eds.): Fundamental Physics of Ferroelectrics 2003 (AIP, Melville, NY 2003) Google Scholar
  196. K. M. Rabe, U. V. Waghmare: Strain coupling in the PbTiO3 ferroelectric transition, Philos. Trans. Roy. Soc. Lond. A354, 2897 (1996) Google Scholar
  197. K. M. Rabe, E. Cockayne: Temperature-dependent dielectric and piezoelectric response of ferroelectrics from first principles, in R. E. Cohen (Ed.): First-Principles Calculations for Ferroelectrics, AIP Conference Proceedings 436 (American Institute of Physics, Woodbury, New York 998) p. 61 Google Scholar
  198. A. Garcia, D. Vanderbilt: Electromechanical behavior of {BaTiO_3} from first principles, Appl. Phys. Lett. 72, 2981 (1998) Google Scholar
  199. J. \`I{\~n}iguez, S. Ivantchev, J. M. Perez-Mato, A. Garcia: Devonshire–{L}andau free energy of {BaTiO_3} from first principles, Phys. Rev. B 63, 144103 (2001) Google Scholar
  200. R. Comes, M. Lambert, A. Guinier: The chain structure of {BaTiO3} and {KNbO3}, Solid State Commun. 6, 715 (1968) Google Scholar
  201. N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev: Equilibrium states and phase transitions in epitaxial ferroelectric thin films, Ferroelectrics 223, 79 (1999) Google Scholar
  202. A. Akbarzadeh, L. Bellaiche, K. Leung, J. \'I{\~n}iguez, D. Vanderbilt: Atomistic simulations of the incipient ferroelectric {KTaO_3}, Phys. Rev. B 70, 054103 (2004) Google Scholar
  203. J. W. Flocken, R. A. Guenther, J. R. Hardy, L. L. Boyer: First-principles study of structural instabilities in halide-based perovskites: {C}ompetition between ferroelectricity and ferroelasticity, Phys. Rev. B 31, 7252 (1985) Google Scholar
  204. S. Koval, J. Kohanoff, R. L. Migoni, A. Bussman-Holder: Interplay between proton ordering and ferroelectric polarization in {H}-bonded {KDP}-type crystals, Comput. Mater. Sci. 22, 87 (2001) Google Scholar
  205. S. Koval, J. Kohanoff, R. L. Migoni, E. Tosatti: Ferroelectricity and isotope effects in hydrogen-bonded {KDP} crystals, Phys. Rev. Lett. 89, 187602 (2002) Google Scholar
  206. S. M. Nakhmanson, M. {Buongiorno Nardelli}, J. Bernholc: Ab-initio studies of polarization and piezoelectricity in vinylidene fluoride and {BN}-based polymers, Phys. Rev. Lett. 92, 115504 (2004) Google Scholar
  207. S. M. Nakhmanson, M. B. Nardelli, J. Bernholc: Collective polarization effects in b-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene, Phys. Rev. B 72, 115210 (2005) Google Scholar
  208. I. Inbar, R. E. Cohen: Comparison of the electronic structure and energetics of ferroelectric {LiNbO_3} and {LiTaO_3}, Phys. Rev. B 53, 1193 (1996) Google Scholar
  209. I. Inbar, R. E. Cohen: Origin of ferroelectricity in {LiNbO_3} and {LiTaO_3}, Ferroelectrics 194, 83 (1997) Google Scholar
  210. K. Parlinski, Z. Q. Li, Y. Kawazoe: Ab initio calculations of phonons in {LiNbO_3}, Phys. Rev. B 61, 272 (2000) Google Scholar
  211. V. Caciuc, A. V. Postnikov, G. Borstel: Ab initio structure and zone-center phonons in {LiNbO_3}, Phys. Rev. B 61, 8806 (2000) Google Scholar
  212. M. Veithen, P. Ghosez: Dielectric and dynamical properties of lithium niobate, Phys. Rev. B 65, 214302 (2002) Google Scholar
  213. M. Veithen, X. Gonze, P. Ghosez: Electron localization: {B}and-by-band decomposition and application to oxides, Phys. Rev. B 66, 235113 (2002) Google Scholar
  214. J. \`I{\~n}iguez, A. Garcia, J. M. Perez-Mato: First-principles study of the structural instabilities in hexagonal barium titanate, Ferroelectrics 237, 329 (2000) Google Scholar
  215. J. \`I{\~n}iguez, A. Garcia, J. M. {Perez-Mato}: Analysis of soft optical modes in hexagonal {BaTiO_3}: {T}ransference of perovskite local distortions, J. Phys. Condens. Matter 12, L387 (2000) Google Scholar
  216. K. Kam, J. H. Henkel: Calculated polarization and piezoelectric constants of {NaNO_2}, Phys. Rev. B 17, 1361 (1978) Google Scholar
  217. F. Ishii, T. Oguchi: First-principles calculation of spontaneous polarization and phase stability in {NaNO_2}, J. Phys. Soc. Jpn. 71, 336 (2002) Google Scholar
  218. Y. Noel, M. Catti, R. Dovesi: Ab initio calculation of piezoelectric and ferroelectric properties of {NaNO_2}, Ferroelectrics 300, 139 (2004) Google Scholar
  219. M. Catti, Y. Noel, R. Dovesi: Theoretical study of sodium nitrite piezoelectricity and elasticity, J. Phys. Condens. Matter 17, 4833 (2005) Google Scholar
  220. O. Dieguez, D. Vanderbilt: First-principles calculations at constant polarization, Phys. Rev. Lett. 96, 056401 (2006) Google Scholar
  221. M. Q. Cai, Z. Yin, M.-S. Zhang, Y. Li: Electronic structure of the ferroelectric-layered perovskite bismuth titanate by calculation within density-functional theory, Chem. Phys. Lett. 399, 89 (2004) Google Scholar
  222. M. Q. Cai, Z. Yin, M.-S. Zhang, Y. Li: First-principles study of ferroelectric and non-linear optical properties in bismuth titanate, Chem. Phys. Lett. 401, 405 (2005) Google Scholar
  223. M. G. Stachiotti, C. O. Rodriguez, C. Ambrosch-Draxl, N. E. Christensen: Electronic structure and ferroelectricity in {SrBi_2Ta_2O_9}, Phys. Rev. B 61, 14434 (2000) Google Scholar
  224. J. M. Perez-Mato, M. Aroyo, A. Garcia, P. Blaha, K. Schwarz, J. Schweifer, K. Parlinski: Competing structural instabilities in the ferroelectric {A}urivillius compounds, Phys. Rev. B 70, 214111 (2004) Google Scholar
  225. A. Snedden, K. S. Knight, P. Lightfoot: Structural distortions in the layered perovskites {CsANb2O7 (A = Nd, Bi)}, J. Solid State Chem. 173, 309 (2003) Google Scholar
  226. C. J. Fennie, K. M. Rabe: Ferroelectricity in the {D}ion–{J}acobson {CsBiNb_2O_7} from first principles, Appl. Phys. Lett. 88, 262902 (2006) Google Scholar
  227. N. A. Hill: Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B 104, 6694 (2000) Google Scholar
  228. A. K. Kundu, S. B. Krupanidhi, U. V. Waghmare, C. N. R. Rao: Biferroic {YCrO_3}, Phys. Rev. B 72, 220101 (2005) Google Scholar
  229. P. Baettig, C. Ederer, N. A. Spaldin: First principles study of the multiferroics {BiFeO_3}, {Bi_2FeCrO_6}, and {BiCrO_3}: {S}tructure, polarization and ferromagnetic ordering temperature, Phys. Rev. B 72, 214105 (2005) Google Scholar
  230. P. Baettig, N. A. Spaldin: Ab initio prediction of a multiferroic with large polarization and magnetization, Appl. Phys. Lett. 86, 012505 (2005) Google Scholar
  231. C. Ederer, N. A. Spaldin: Origin of ferroelectricity in the multiferroic barium fluorides {BaMF_4}: {A} first principles study, Phys. Rev. B 74, 024102 (2006) Google Scholar
  232. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito: Ferroelectricity from iron valence ordering in the charge-frustrated system {LuFe_2O_4}, Nature 436, 1136 (2005) Google Scholar
  233. T. Thonhauser, K. M. Rabe: fcc breathing instability in {BaBiO_3} from first principles, Phys. Rev. B 73, 212106 (2006) Google Scholar
  234. S. C. Abrahams: Systematic prediction of new ferroeletrics in space group {R}3, {I}, Acta Cryst. B 62, 26 (2006) Google Scholar
  235. E. Kroumova, M. I. Aroyo, J. M. Perez-Mato: Prediction of new displacive ferroelectrics through systematic pseudosymmetry search: {R}esults for materials with {Pba2} and {Pmc2(1)} symmetry, Acta Crystallogr. B 58, 921 (2002) Google Scholar
  236. C. Capialls, M. I. Aroyo, J. M. Perez-Mato: Search for new {Pna2(1)} ferroelectrics, Ferroelectrics 301, 203 (2004) Google Scholar
  237. N. J. Ramer, A. M. Rappe: Virtual-crystal approximation that works: {L}ocating a compositional phase boundary in {Pb(Zr1-xTi_x)O_3}, Phys Rev. B 62, 743 (2000) Google Scholar
  238. C. Bungaro, K. M. Rabe: unpublished Google Scholar
  239. L. Walizer, S. Lisenkov, L. Bellaiche: Finite-temperature properties of {(Ba,Sr)TiO_3} systems from atomistic simulations, Phys. Rev. B 73, 144105 (2006) Google Scholar
  240. S. Tinte, M. G. Stachiotti, S. R. Phillpot, M. Sepliarsky, D. Wolf, R. L. Migoni: Ferroelectric properties of {Ba_xSr1-xTiO_3} solid solutions obtained by molecular dynamics simulation, J. Phys. Condens. Matter 16, 3495 (2004) Google Scholar
  241. N. J. Ramer, A. M. Rappe: Application of a new virtual crystal approach for the study of disordered perovskites, J. Phys. Chem. Solids 61, 315 (2000) Google Scholar
  242. G. Sáhi-Szabό, R. E. Cohen, H. Krakauer: First-principles study of piezoelectricity in tetragonal {PbTiO_3} and {PbZr0.5Ti0.5O_3}, Phys. Rev. B 59, 12771 (1999) Google Scholar
  243. C. Bungaro, K. M. Rabe: Lattice instabilities of {PbZrO_3/PbTiO_3[1:1]} superlattices from first principles, Phys. Rev. B 65, 224106 (2002) Google Scholar
  244. N. J. Ramer, S. P. Lewis, E. J. Mele, A. M. Rappe: Stress-induced phase transition in {PbZr0.5Ti0.5O_3}, AIP Conf. Proc. 436, 156 (1998) Google Scholar
  245. L. Bellaiche, D. Vanderbilt: Intrinsic piezoelectric response in perovskite alloys: {PMN–PT} versus {PZT}, Phys. Rev. Lett. 83, 1347 (1999) Google Scholar
  246. I. Grinberg, V. R. Cooper, A. M. Rappe: Oxide chemistry and local structure of {{PbZr_xTi1-xO_3}} studied by density-functional theory supercell calculations, Phys. Rev. B 69, 144118 (1–17) (2004) Google Scholar
  247. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, S. E. Park: A monoclinic ferroelectric phase in the {Pb(Zr1-xTi_x)O_3} solid solution, Appl. Phys. Lett. 74, 2059 (1999) Google Scholar
  248. D. Vanderbilt, M. H. Cohen: Monoclinic and triclinic phases in higher-order {D}evonshire theory, Phys. Rev. B 63, 094108 (2001) Google Scholar
  249. A. M. George, J. \`I{\~n}iguez, L. Bellaiche: Anomalous properties in ferroelectrics induced by atomic ordering, Nature 413, 54 (2001) Google Scholar
  250. A. M. George, J. \`I{\~n}iguez, L. Bellaiche: Effects of atomic short-range order on the properties of perovskite alloys in their morphotropic phase boundary, Phys. Rev. Lett. 91, 045504 (2003) Google Scholar
  251. S. Tinte, K. M. Rabe, D. Vanderbilt: unpublished Google Scholar
  252. S. A. Prosandeev, E. Cockayne, B. P. Burton, S. Kamba, J. \mbox{Petzelt}, Y. Yuzyuk, R. S. Katiyar, S. B. Vakhrushev: Lattice dynamics in {PbMg1/3Nb2/3O_3}, Phys. Rev. B 70, 134110 (2004) Google Scholar
  253. N. Choudhury, Z. G. Wu, E. J. Walter, R. E. Cohen: Ab initio linear response and frozen phonons for the relaxor {PbMg1/3Nb2/3O_3}, Phys. Rev. B 71, 125134 (2005) Google Scholar
  254. N. Choudhury, R. E. Cohen, E. J. Walter: First principles studies of the {B}orn effective charges and electronic dielectric tensors for the relaxor {PMN}, Comput. Mater. Sci. 37, 152 (2006) Google Scholar
  255. R. Hemphill, L. Bellaiche, A. Garcia, D. Vanderbilt: Finite-temperature properties of disordered and ordered {Pb(Sc0.5Nb0.5)O3} alloys, Appl. Phys. Lett. 77, 3642 (2000) Google Scholar
  256. U. V. Waghmare, E. J. Cockayne, B. P. Burton: Ferroelectric phase transitions in nano-scale chemically ordered {PbSc0.5Nb0.5O_3} using a first principles model {H}amiltonian, Ferroelectrics 291, 187 (2003) Google Scholar
  257. S. Tinte, B. P. Burton, E. Cockayne, U. V. Waghmare: Origin of the relaxor state in {Pb(B_xB'1-x)O_3} perovskites, Phys. Rev. Lett. 97, 137601 (2006) Google Scholar
  258. W. Bhat, A. M. Umarji, V. B. Shenoy, U. V. Waghmare: Diffuse ferroelectric phase transitions in {Pb}-substituted {PbFe1/2Nb1/2O_3}, Phys. Rev. B 72, 014104 (2005) Google Scholar
  259. I. Grinberg, A. M. Rappe: Local structure and macroscopic properties in PbMg1/3Nb2/3O3-PbTiO3 and PbMg1/3Zn2/3O3-PbTiO3 solid solutions, Phys. Rev. B 70, 220101 (2004) Google Scholar
  260. R. Haumont, A. Al-Barakaty, B. Dkhil, J. M. Kiat, L. Bellaiche: Morphotropic phase boundary of heterovalent perovskite solid solutions: {E}xperimental and theoretical investigation of PbSc1/2Nb1/2O3-PbTiO3, Phys. Rev. B 71, 104106 (2005) Google Scholar
  261. P. Juh\'as, I. Grinberg, A. M. Rappe, W. Dmowski, T. Egami, P. K. Davies: Correlations between the structure and dielectric properties of {Pb(Sc_\frac{2}{3}W_\frac{1}{3})O_3–Pb(Ti/Zr)O_3} relaxors, Phys. Rev. B 69, 214101 (2004) Google Scholar
  262. N. Setter, L. E. Cross: The role of {B}-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics, J. Appl. Phys. 51, 4356 (1980) Google Scholar
  263. B. P. Burton, R. E. Cohen: Theoretical study of cation ordering in the system Pb(Sc0.5Ta0.5)O3, Ferroelectrics 151, 331 (1994) Google Scholar
  264. B. P. Burton, R. E. Cohen: Nonempirical calculation of the Pb(Sc0.5Ta0.5)O3-PbTiO3 quasi-binary phase diagram, Phys. Rev. B 52, 792 (1995) Google Scholar
  265. B. P. Burton: Empirical cluster expansion models of cation order-disorder in {A(B'1/3B2/3)O_3} perovskites, Phys. Rev. B 59, 6087 (1999) Google Scholar
  266. L. Bellaiche, D. Vanderbilt: Electrostatic model of atomic ordering in complex perovskite alloys, Phys. Rev. Lett. 81, 1318 (1998) Google Scholar
  267. L. Bellaiche, J. Padilla, D. Vanderbilt: Heterovalent and {A}-atom effects in {A(B'B)O_3} perovskite alloys, Phys. Rev. B 59, 1834 (1999) Google Scholar
  268. B. P. Burton, E. Cockayne: Why {Pb(B,B')O_3} perovskites disorder at lower temperatures than {Ba(B,B')O_3} perovskites, Phys. Rev. B 60, 12542 (1999) Google Scholar
  269. Z. Wu, H. Krakauer: Charge transfer electrostatic model of compositional order in perovskite alloys, Phys. Rev. B 63, 184113 (2001) Google Scholar
  270. R. I. Eglitis, N. E. Christensen, E. A. Kotomin, A. V. Postnikov, G. Borstel: First-principles and semiempirical calculations for {F} centers in {KNbO3}, Phys. Rev. B 56, 8599 (2001) Google Scholar
  271. E. A. Kotomin, R. I. Eglitis, A. V. Postnikov, G. Borstel, N. E. Christensen: First-principles and semiempirical calculations for bound-hole polarons in {KNbO3}, Phys. Rev. B 60, 1 (1999) Google Scholar
  272. R. Astala, P. D. Bristowe: Ab initio and classical simulations of defects in {SrTiO3}, Comput. Mater. Sci. 22, 81 (2001) Google Scholar
  273. H. Crogman, L. Bellaiche: Properties of vacancy-rich ordered {(A,[ ])Nb_2O6} perovskites, Phys. Rev. B 66, 220103 (2002) Google Scholar
  274. E. Cockayne, B. P. Burton: Dipole moment of a Pb-O vacancy pair in {PbTiO_3}, Phys. Rev. B 69, 144116 (2004) Google Scholar
  275. J. P. Buban, H. Iddir, S. Ogut: Structural and electronic properties of oxygen vacancies in cubic and antiferrodistortive phases of {SrTiO_3}, Phys. Rev. B 69, 180102 (2004) Google Scholar
  276. W. D. Luo, W. H. Duan, S. G. Louie, M. L. Cohen: Structural and electronic properties of n-doped and p-doped {SrTiO_3}, Phys. Rev. B 70, 214109 (2004) Google Scholar
  277. C. Ederer, N. A. Spaldin: Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite, Phys. Rev. B 71, 224103 (2005) Google Scholar
  278. J. Padilla, W. Zhong, D. Vanderbilt: First principles investigation of 180 domain walls in {BaTiO_3}, Phys. Rev. B 53, 5969 (1996) Google Scholar
  279. B. Meyer, D. Vanderbilt: Ab initio study of ferroelectric domain walls in {PbTiO_3}, Phys. Rev. B 65, 104111 (2002) Google Scholar
  280. S. Poykko, D. J. Chadi: Ab initio study of \unit{180}{\degree} domain wall energy and structure in {PbTiO3}, Appl. Phys. Lett. 75, 2830 (1999) Google Scholar
  281. S. Poykko, D. J. Chadi: Ab initio study of dipolar defects and \unit{180}{\degree} domain walls in {PbTiO3}, J. Phys. Chem. Solids 61, 291 (2000) Google Scholar
  282. L. He, D. Vanderbilt: First-principles study of oxygen-vacancy pinning of domain walls in {PbTiO_3}, Phys. Rev. B 68, 134103 (2003) Google Scholar
  283. H. Li, H. Zheng, L. Salamanca-Riba, R. Ramesh, I. I. Naumov, K. Rabe: Origin of antiphase domain boundaries and their effect on the dielectric constant of Ba0.5Sr0.5TiO3 films grown on {MgO} substrates, Appl. Phys. Lett. 81, 4398 (2002) Google Scholar
  284. I. A. Kornev, L. Bellaiche: Planar defects and incommensurate phases in highly ordered perovskite solid solutions, Phys. Rev. Lett. 89, 115502 (2002) Google Scholar
  285. R. E. Cohen: Periodic slab {LAPW} computations for ferroelectric {BaTiO3}, J. Phys. Chem. Solids 57, 1393 (1996) Google Scholar
  286. J. Padilla, D. Vanderbilt: Ab initio study of {BaTiO_3} surfaces, Phys. Rev. B 56, 1625 (1997) Google Scholar
  287. F. Cora, C. R. A. Catlow: {QM} investigations on perovskite-structured transition metal oxides: {B}ulk, surfaces and interfaces, Faraday Discuss. 114, 421 (1999) Google Scholar
  288. E. Heifets, E. A. Kotomin, J. Maier: Semi-empirical simulations of surface relaxation for perovskite titanates, Surf. Sci. 462, 19 (2000) Google Scholar
  289. B. Meyer, D. Vanderbilt: Ab initio study of {BaTiO_3} and {PbTiO_3} surfaces in external electric fields, Phys. Rev. B 63, 205426 (2001) Google Scholar
  290. E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, G. Borstel: Ab initio modeling of surface structure for {SrTiO_3} perovskite crystals, Phys. Rev. B 64, 235417 (2001) Google Scholar
  291. S. Tinte, M. G. Stachiotti: Surface effects and ferroelectric phase transitions in {BaTiO_3} ultrathin films, Phys. Rev. B 64, 235403 (2001) Google Scholar
  292. M. Krcmar, C. L. Fu: Structural and electronic properties of {BaTiO_3} slabs: {M}echanism for surface conduction, Phys. Rev. B 68, 115404 (2003) Google Scholar
  293. K. Johnston, M. R. Castell, A. T. Paxton, M. W. Finnis: {SrTiO_3(001)(2)} reconstructions: First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images, Phys. Rev. B 70, 085415 (2004) Google Scholar
  294. M. Sepliarsky, M. G. Stachiotti, R. L. Migoni: Surface reconstruction and ferroelectricity in {PbTiO3} thin films, Phys. Rev. B 72, 14110 Google Scholar
  295. A. M. Kolpak, N. Sai, A. M. Rappe: Electrostatic boundary conditions in ferroelectric {PbTiO_3} thin films, Phys. Rev. B 74, 054112 (2006) Google Scholar
  296. T. Tybell, C. H. Ahn, J.-M. Triscone: Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75, 856 (1999) Google Scholar
  297. M. Dawber, P. Chandra, P. B. Littlewood, J. F. Scott: Depolarization corrections to the coercive field in thin-film ferroelectrics, J. Phys. Condens. Matter 15, 393 (2003) Google Scholar
  298. J. Junquera, P. Ghosez: Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422, 506 (2003) Google Scholar
  299. N. Sai, A. M. Kolpak, A. M. Rappe: Ferroelectricity in ultrathin perovskite films, Phys Rev. B 72, 020101 (2005) Google Scholar
  300. D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, A. M. Rappe: Stabilization of monodomain polarization in ultrathin {PbTiO_3} films, Phys. Rev. Lett. 96, 127601 (2006) Google Scholar
  301. C. H. Ahn, J. M. Triscone, N. Archibald, M. Decroux, R. H. Hammond, T. H. Geballe, O. Fischer, M. R. Beasley: Ferroelectric field-effect in epitaxial thin-film oxide {SrCuO_2/Pb(Zr0.5Ti0.48)O_3} heterostructures, Science 269, 373 (1995) Google Scholar
  302. D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, R. Pindak, E. A. Stern: Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron {X}-ray scattering measurements, Phys. Rev. B 71, 144112 (2005) Google Scholar
  303. J. E. Spanier, A. M. Kolpak, J. J. Urban, W. S. Yun, L. Ouyang, I. Grinberg, A. M. Rappe, H. Park: Ferroelectric phase transition in individual single-crystalline {BaTiO_3} nanowires, Nano Lett. 6, 735 (2006) Google Scholar
  304. L. Kim, J. Kim, D. Jung, J. Lee, U. V. Waghmare: Polarization of strained {BaTiO_3/SrTiO_3} artificial superlattice: {F}irst principles study, Appl. Phys. Lett. 87, 052903 (2005) Google Scholar
  305. L. Kim, J. Kim, U. V. Waghmare, D. Jung, J. Lee: Structural transition and dielectric response of an epitaxially strained {BaTiO_3/SrTiO_3} superlattice: {A} first principles study, Phys. Rev. B 72, 214121 (2005) Google Scholar
  306. L. Kim, J. Kim, U. V. Waghmare, D. G. Jung, J. Lee: Lattice instabilities of {BaTiO_3/SrTiO_3} artificial superlattice, Integrated Ferroelectrics 73, 3 (2005) Google Scholar
  307. N. Sai, B. Meyer, D. Vanderbilt: Compositional inversion symmetry breaking in ferroelectric perovskites, Phys. Rev. Lett. 84, 5636 (2000) Google Scholar
  308. M. P. Warusawithana, E. V. Colla, J. N. Eckstein, M. B. Weissman: Artificial dielectric superlattices with broken inversion symmetry, Phys. Rev. Lett. 90, 036802 (2003) Google Scholar
  309. S. M. Nakhmanson, K. M. Rabe, D. Vanderbilt: Predicting polarization enhancement in multicomponent ferroelectric superlattices, Phys. Rev. B 73, 060101 (2006) Google Scholar
  310. S. M. Nakhmanson, K. M. Rabe, D. Vanderbilt: Polarization enhancement in two- and three-component ferroelectric superlattices, Appl. Phys. Lett. 87, 102906 (2005) Google Scholar
  311. M. P. Warusawithana, E. V. Colla, J. N. Eckstein, M. B. Weissman: Artificial dielectric superlattices with broken inversion symmetry, Phys. Rev. Lett. 90, 036802 (2003) Google Scholar
  312. H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, D. H. Lowndes: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature 433, 395 (2005) Google Scholar
  313. A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Phase transitions and polarizations in epitaxial {BaTiO3/SrTiO3} superlattices studied by second-harmonic generation, J. Appl. Phys. 93, 1180 (2003) Google Scholar
  314. W. Tian, J. C. Jiang, X. Q. Pan, J. H. Haeni, Y. L. Li, L. Q. Chen, D. G. Schlom, J. B. Neaton, K. M. Rabe, Q. X. Jia: Structural evidence for enhanced polarization in a commensurate short-period {BaTiO_3/SrTiO_3} superlattice, Appl. Phys. Lett. 89, 092905 (2006) Google Scholar
  315. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, G. Lucazeau: An {X}-ray diffraction and {R}aman spectroscopy investigation of {A}-site substituted perovskite compounds, J. Phys. Condens. Matter 12, 3267 (2000) Google Scholar
  316. X. Gonze, P. Ghosez, R. Godby: Density-functional theory of polar insulators, Phys. Rev. Lett. 78, 294 (1997) Google Scholar
  317. R. Resta: Density-polarization-functional theory and long-range correlation in dielectrics, Phys. Rev. Lett. 77, 2265 (1996) Google Scholar
  318. R. Ortiz, I. Souza, R. M. Martin: Exchange-correlation hole in polarized insulators: {I}mplications for the microscopic functional theory of dielectrics, Phys. Rev. Lett. 80, 353 (1998) Google Scholar
  319. R. Resta, S. Sorella: Many-body effects on polarization and dynamical charges in a partly covalent polar insulator, Phys. Rev. Lett. 74, 4738 (1995) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  2. 2.Physique Théorique des Matériaux, Département de PhysiqueUniversité de LiègeBelgium

Personalised recommendations