Skip to main content

Theory of Polarization: A Modern Approach

  • Chapter
Physics of Ferroelectrics

Part of the book series: Topics in Applied Physics ((TAP,volume 105))

Abstract

In this Chapter we review the physical basis of the modern theory of polarization, emphasizing how the polarization can be defined in terms of the accumulated adiabatic flow of current occurring as a crystal is modified or deformed. We explain how the polarization is closely related to a Berry phase of the Bloch wavefunctions as the wavevector is carried across the Brillouin zone, or equivalently, to the centers of charge of Wannier functions constructed from the Bloch wavefunctions. A resulting feature of this formulation is that the polarization is formally defined only modulo a “quantum of polarization” – in other words, that the polarization may be regarded as a multi-valued quantity. We discuss the consequences of this theory for the physical understanding of ferroelectric materials, including polarization reversal, piezoelectric effects, and the appearance of polarization charges at surfaces and interfaces. In so doing, we give a few examples of realistic calculations of polarization-related quantities in perovskite ferroelectrics, illustrating how the present approach provides a robust and powerful foundation for modern computational studies of dielectric and ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L. D. Landau, E. M. Lifshitz: Electrodynamics of Continuous Media (Pergamon, Oxford 1984)

    Google Scholar 

  • O. F. Mossotti: Azioni e deformazioni nei dielettrici, Memorie di Matematica e di Fisica della Societ\`a Italiana delle Scienze Residente in Modena 24, 49 (1850)

    Google Scholar 

  • R. Clausius: Die Mechanische Behandlung der Electrica (Vieweg, Berlin 1879)

    Google Scholar 

  • M. Posternak, R. Resta, A. Baldereschi: Role of covalent bonding in the polarization of perovskite oxides: The case of {KNbO_3}, Phys. Rev. B 50, 8911 (1994)

    Article  CAS  Google Scholar 

  • S. Lundqvist, N. H. March (Eds.): Theory of the Inhomogeneous Electron Gas (Plenum, New York 1983)

    Google Scholar 

  • W. E. Pickett: Pseudopotential methods in condensed matter applications, Comput. Phys. Rep. 9, 115 (1989)

    Article  Google Scholar 

  • C. Kittel: Introduction to Solid State Physics, 7 ed. (Wiley, New York 1996)

    Google Scholar 

  • N. W. Ashcroft, N. D. Mermin: Solid State Physics (Saunders, Philadelphia 1976)

    Google Scholar 

  • R. M. Martin: Comment on calculations of electric polarization in crystals, Phys. Rev. B 9, 1998 (1974)

    Article  CAS  Google Scholar 

  • R. M. Martin: Piezoelectricity, Phys. Rev. B 5, 1607 (1972)

    Article  Google Scholar 

  • R. M. Martin: Comment on piezoelectricity under hydrostatic pressure, Phys. Rev. B 6, 4874 (1972)

    Article  CAS  Google Scholar 

  • W. F. Woo, W. Landauer: Comment on ``piezoelectricity under hydrostatic pressure'', Phys. Rev. B 6, 4876 (1972)

    Article  CAS  Google Scholar 

  • R. Landauer: Pyroelectricity and piezoelectricity are not true volume effects, Solid State Commun. 40, 971 (1981)

    Article  CAS  Google Scholar 

  • C. Kallin, B. J. Halperin: Surface-induced charge disturbances and piezoelectricity in insulating crystals, Phys. Rev. B 29, 2175 (1984)

    Article  CAS  Google Scholar 

  • R. Landauer: Introduction to ferroelectric surfaces, Ferroelectrics 73, 41 (1987)

    Article  Google Scholar 

  • A. K. Tagantsev: Electric polarization in crystals and its response to thermal and elastic perturbations, Phase Transitions 35, 119 (1991)

    CAS  Google Scholar 

  • R. Resta: Theory of the electric polarization in crystals, Ferroelectrics 136, 51 (1992)

    Article  CAS  Google Scholar 

  • R. D. King-Smith, D. Vanderbilt: Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993)

    Article  CAS  Google Scholar 

  • R. Resta: Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66, 899 (1994)

    Article  CAS  Google Scholar 

  • S. Baroni, S. de Gironcoli, A. {Dal Corso}, P. Giannozzi: Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001)

    Article  CAS  Google Scholar 

  • A. Shapere, F. Wilczek (Eds.): Geometric Phases in Physics (World Scientific, Singapore 1989)

    Google Scholar 

  • R. Resta: Manifestations of {B}erry's phase in molecules and condensed matter, J. Phys. Condens. Matter 12, R107 (2000)

    Article  CAS  Google Scholar 

  • D. Vanderbilt, R. D. King-Smith: Electric polarization as a bulk quantity and its relation to surface charge, Phys. Rev. B 48, 4442 (1993)

    Article  CAS  Google Scholar 

  • D. J. Thouless: Quantization of particle transport, Phys. Rev. B 27, 6083 (1983)

    Article  CAS  Google Scholar 

  • R. Resta, M. Posternak, A. Baldereschi: Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3, Phys. Rev. Lett. 70, 1010 (1993)

    Article  CAS  Google Scholar 

  • S. Dall'Olio, R. Dovesi, R. Resta: Spontaneous polarization as a {B}erry phase of the {H}artree-{F}ock wave function: The case of KNbO3, Phys. Rev. B 56, 10105 (1997)

    Article  Google Scholar 

  • P. Ghosez, J.-P. Michenaud, X. Gonze: Dynamical atomic charges: The case of ABO3 compounds, Phys. Rev. B 58, 6224 (1998)

    Article  CAS  Google Scholar 

  • R. Pick, M. H. Cohen, R. M. Martin: Microscopic theory of force constants in the adiabatic approximation, Phys. Rev. B 1, 910 (1970)

    Article  Google Scholar 

  • M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford 1954)

    Google Scholar 

  • J. D. Axe: Apparent ionic charges and vibrational eigenmodes of BaTiO3 and other perovskites, Phys. Rev. 157, 429 (1967)

    Article  CAS  Google Scholar 

  • R. Resta: Dynamical charges in oxides: {R}ecent advances, J. Phys. Chem. Solids 61, 153 (1999)

    Article  Google Scholar 

  • W. Zhong, R. D. {King-Smith}, D. Vanderbilt: Giant {L}{O}-{T}{O} splittings in perovskite ferroelectrics, Phys. Rev. Lett. 72, 3618 (1994)

    Article  CAS  Google Scholar 

  • P. Ghosez, X. Gonze, P. Lambin, J.-P. Michenaud: Born effective charges of barium titanate: Band-by-band decomposition and sensitivity to structural features, Phys. Rev. B 51, 6765 (1995)

    Article  CAS  Google Scholar 

  • S. de Gironcoli, S. Baroni, R. Resta: Piezoelectric properties of {I}{I}{I}-{V} semiconductors from first-principles linear-response theory, Phys. Rev. Lett. 62, 2853 (1989)

    Article  Google Scholar 

  • O. H. Nielsen, R. M. Martin: First-principles calculation of stress, Phys. Rev. Lett. 50, 697 (1983)

    Article  CAS  Google Scholar 

  • O. H. Nielsen, R. M. Martin: Quantum-mechanical theory of stress and force, Phys. Rev. B 32, 3780 (1985)

    Article  CAS  Google Scholar 

  • O. H. Nielsen, R. M. Martin: Stresses in semiconductors: Ab initio calculations on {S}i, {G}e, and {G}a{A}s, Phys. Rev. B 32, 3792 (1985)

    Article  CAS  Google Scholar 

  • G. S\'aghi-Szab\'o, R. E. Cohen, H. Krakauer: First-principles study of piezoelectricity in PbTiO3, Phys. Rev. Lett. 80, 4321 (1998)

    Article  Google Scholar 

  • H. Fu, R. E. Cohen: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature 403, 281 (2000)

    Article  CAS  Google Scholar 

  • G. S\'aghi-Szab\'o, R. E. Cohen, H. Krakauer: First-principles study of piezoelectricity in tetragonal PbTiO3 and PbZr1/2Ti1/2O3, Phys. Rev. B 59, 12771 (1999)

    Article  Google Scholar 

  • L. Bellaiche, D. Vanderbilt: Intrinsic piezoelectric response in perovskite alloys: {P}{M}{N}-{P}{T} versus {P}{Z}{T}, Phys. Rev. Lett. 83, 1347 (1999)

    Article  CAS  Google Scholar 

  • D. Vanderbilt: Berry-phase theory of proper piezoelectric response, J. Phys. Chem. Solids 61, 147 (2000)

    Article  CAS  Google Scholar 

  • R. W. Nunes, D. Vanderbilt: Real-space approach to calculation of electric polarization and dielectric constants, Phys. Rev. Lett. 73, 712 (1994)

    Article  CAS  Google Scholar 

  • R. W. Nunes, X. Gonze: Berry-phase treatment of the homogeneous electric field perturbation in insulators, Phys. Rev. B 63, 155107 (2001)

    Article  Google Scholar 

  • I. Souza, J. \`I{\~n}iguez, D. Vanderbilt: First-principles approach to insulators in finite electric fields, Phys. Rev. Lett. 89, 117602 (2002)

    Article  Google Scholar 

  • P. Umari, A. Pasquarello: Ab initio molecular dynamics in a finite homogeneous electric field, Phys. Rev. Lett. 89, 157602 (2002)

    Article  CAS  Google Scholar 

  • I. Souza, J. \`I{\~n}iguez, D. Vanderbilt: Dynamics of {B}erry-phase polarization in time-dependent electric fields, Phys. Rev. B 69, 085106 (2004)

    Article  Google Scholar 

  • J. \'I{\~n}iguez, L. Bellaiche, D. Vanderbilt: First-principles study of (BiScO3)1-x–(PbTiO3)x piezoelectric alloys, Phys. Rev. B 67, 224107 (2003)

    Article  Google Scholar 

  • G. Ortiz, R. M. Martin: Macroscopic polarization as a geometric quantum phase: Many-body formulation, Phys. Rev. B 49, 14 202 (1994)

    Article  CAS  Google Scholar 

  • R. Resta: Quantum-mechanical position operator in extended systems, Phys. Rev. Lett. 80, 1800 (1998)

    Article  CAS  Google Scholar 

  • I. Souza, T. Wilkens, R. M. Martin: Polarization and localization in insulators: Generating function approach, Phys. Rev. B 62, 1666 (2000)

    Article  CAS  Google Scholar 

  • R. Resta: Why are insulators insulating and metals conducting?, J. Phys. Condens. Matter 14, R625 (2002)

    Article  CAS  Google Scholar 

  • X. Gonze, P. Ghosez, R. W. Godby: Density-polarization functional theory of the response of a periodic insulating solid to an electric field, Phys. Rev. Lett. 74, 4035 (1995)

    Article  CAS  Google Scholar 

  • X. Gonze, P. Ghosez, R. W. Godby: Density-functional theory of polar insulators, Phys. Rev. Lett. 78, 294 (1997)

    Article  CAS  Google Scholar 

  • D. Vanderbilt: Nonlocality of {K}ohn-{S}ham exchange-correlation fields in dielectrics, Phys. Rev. Lett. 79, 3966 (1997)

    Article  CAS  Google Scholar 

  • W. Kohn: Theory of the insulating state, Phys. Rev. 133, A171 (1964)

    Article  Google Scholar 

  • N. Marzari, D. Vanderbilt: Maximally localized generalized {W}annier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997)

    Article  CAS  Google Scholar 

  • R. Resta, S. Sorella: Electron localization in the insulating state, Phys. Rev. Lett. 82, 370 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Resta .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Resta, R., Vanderbilt, D. (2007). Theory of Polarization: A Modern Approach. In: Physics of Ferroelectrics. Topics in Applied Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34591-6_2

Download citation

Publish with us

Policies and ethics