Modern Physics of Ferroelectrics: Essential Background

  • Karin M. RabeEmail author
  • Matthew Dawber
  • Céline Lichtensteiger
  • Charles H. Ahn
  • Jean-Marc Triscone
Part of the Topics in Applied Physics book series (TAP, volume 105)


Principles of ferroelectricity and information about ferroelectric materials and their applications are reviewed. The characterization of ferroelectric behavior through measurement of electrical hysteresis is discussed in detail. The main families of ferroelectric oxides, including perovskite compounds and solid solutions, lithium niobate, layered oxides, magnetic ferroelectric oxides, and electronic ferroelectrics are presented and their crystal structures and polarizations given. The effects of pressure and epitaxial strain on perovskites are described. Recent advances in the understanding of ferroelectricity in thin films, superlattices and nanostructures are mentioned. Finally, an overview of applications of feroelectric materials, both established applications and those under development, is included.


Perovskite Structure Modern Physic Spontaneous Polarization Morphotropic Phase Boundary Perovskite Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. E. Lines, A. M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford 1977) Google Scholar
  2. T. Mitsui, S. Nomura, M. Adachi, J. Harada, T. Ikeda, E. Nakamura, E. Sawaguchi, T.Shigenari, Y. Shiozagi, J. Tatsuzaki, K. Toyoda, T. Yamada, K. Gesi, Y. Marita, M. Marutake, T. Shiosaki, K. Wakino: Oxides, Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 16, Part A (Springer, Berlin 1981) Google Scholar
  3. E. Nakamura, M. Adachi, Y. Akishige, K. Deguchi, J. Harada, T. Ikeda, M. Okuyama, E. Sawaguchi, Y. Shiozaki, K. Toyoda, T. Yamada, K. Gesi, T. Hikita, Y. Makita, T. Shigenari, I. Tatsuzaki, T. Yahi: Oxides, Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 28 (Springer, Berlin 1981) Google Scholar
  4. C. B. Sawyer, C. H. Tower: Rochelle salt as a dielectric, Phys. Rev. 35, 269 (1930) CrossRefGoogle Scholar
  5. M. Dawber, I. Farnan, J. F. Scott: A classroom experiment to demonstrate ferroelectric hysteresis, Am. J. Phys. 71, 819 (2003) CrossRefGoogle Scholar
  6. M. Dawber, K. M. Rabe, J. F. Scott: Physics of thin film ferroelectric oxides, Rev. Mod. Phys. 77, 1083 (2005) CrossRefGoogle Scholar
  7. D. J. Kim, et al.: Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors, Phys. Rev. Lett. 95, 237602 (2005) CrossRefGoogle Scholar
  8. W. Cochran: Crystal stability and the theory of ferroelectricity, Adv. Phys. 9, 387 (1960) Google Scholar
  9. P. W. Anderson: in G. Skanavi (Ed.): Fizika Dielectrikov (Akad. Nauk, Moscow 1960) Google Scholar
  10. A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. H. Hao, X. X. Xi: Soft-mode hardening in SrTiO3 thin films, Nature 404, 373 (2000) CrossRefGoogle Scholar
  11. P. M. Gehring, S. Wakimoto, Z. G. Ye, G. Shirane: Soft mode dynamics above and below the {B}urns temperature in the relaxor Pb(Mg1/3Nb2/3)O3, Phys. Rev. Lett. 87, 277601 (2001) CrossRefGoogle Scholar
  12. S. C. Abrahams: Structurally based predictions of ferroelectricity in seven inorganic materials with space group {P}ba2 and two experimental confirmations, Acta Crystallogr. B 45, 228 (1989) CrossRefGoogle Scholar
  13. E. Kroumova, M. I. Aroyo, J. M. Perez-Mato: Prediction of new displacive ferroelectrics through systematic pseudosymmetry search: Results for materials with {P}ba2 and {P}mc2(1) symmetry, Acta Crystallogr. B 58, 921 (2002) CrossRefGoogle Scholar
  14. C. Capialls, M. I. Aroyo, J. M. Perez-Mato: Search for new {P}na2(1) ferroelectrics, Ferroelectrics 301, 203 (2004) CrossRefGoogle Scholar
  15. K. M. Rabe: Lattice Instabilities of Complex Perovskite Oxides from First Principles, Computer Simulation Studies in Condensed Matter Physics XVI, Springer Proceedings in Physics (Springer, New York 2003) Google Scholar
  16. R. Comes, M. Lambert, A. Guinier: The chain structure of {BaTiO3} and {KNbO3}, Solid State Commun. 6, 715 (1968) CrossRefGoogle Scholar
  17. T. Egami, S. Teslic, W. Dmowski, D. Viehland, S. Vakhrushev: Local atomic structure of relaxor ferroelectric solids determined by pulsed neutron and {X}-ray scattering, Ferroelectrics 199, 103 (1997) CrossRefGoogle Scholar
  18. N. Sicron, B. Ravel, Y. Yacoby, E. A. Stern, F. Dogan, J. J. Rehr: Nature of the ferroelectric phase transition in PbTiO3, Phys. Rev. B 50, 13168 (1994) CrossRefGoogle Scholar
  19. P. Ghosez: Microscopic properties of ferroelectric oxides from first principles: Selected topics (Troisieme Cycle de la Physique en Suisse Romande, Lausanne 2002) 145 pages URL: ro.Ghosez.pdf Google Scholar
  20. L. Eyraud (Ed.): Dielectriques Solides Anisoptropes et Ferroelectricite (Gauthier-Villars, Paris 1967) Google Scholar
  21. G. H. Kwei, A. C. Lawson, S. J. L. Billinge, S. W. Cheong: Structures of the ferroelectric phases of barium titanate, J. Phys. Chem. 97, 2368 (1993) CrossRefGoogle Scholar
  22. W. Zhong, D. Vanderbilt, K. M. Rabe: Phase transitions in BaTiO3 from first principles, Phys. Rev. Lett. 73, 1861 (1994) CrossRefGoogle Scholar
  23. C. H. Ahn, K. M. Rabe, J.-M. Triscone: Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures, Science 303, 488 (2004) CrossRefGoogle Scholar
  24. A. W. Hewat: Soft modes and the structure, spontaneous polarization and {C}urie constants of perovskite ferroelectrics: Tetragonal potassium niobate, J. Phys. C: Solid State Phys. 6, 1074 (1973) CrossRefGoogle Scholar
  25. M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan, T. Nakamura: Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82, 3540 (1999) CrossRefGoogle Scholar
  26. P. A. Fleury, J. F. Scott, J. M. Worlock: Soft phonon modes and the \unit{110}{\kelvin} phase transition in SrTiO3, Phys. Rev. Lett. 21, 16 (1968) CrossRefGoogle Scholar
  27. G. A. Samara, B. Morosin: Anharmonic effects in KTaO3: Ferroelectric mode, thermal expansion and compressibility, Phys. Rev. B 8, 1256 (1973) CrossRefGoogle Scholar
  28. S. E. Park, T. R. Shrout: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82, 1804 (1997) CrossRefGoogle Scholar
  29. G. A. Samara: Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3 pressure studies, Ferroelectrics 2, 277 (1971) Google Scholar
  30. Z. Wu, R. E. Cohen: Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3, Phys. Rev. Lett. 95, 196804 (2005) CrossRefGoogle Scholar
  31. I. A. Kornev, L. Bellaiche, P. Bouvier, P. E. Janolin, B. Dkhil, J. Kreisel: Ferroelectricity of perovskites under pressure, Phys. Rev. Lett. 95, 196804 (2005) CrossRefGoogle Scholar
  32. T. Ishidate, S. Abe, H. Takahashi, N. Moêri: Phase diagram of BaTiO3, Phys. Rev. Lett. 78, 2397 (1997) CrossRefGoogle Scholar
  33. D. A. Tenne, X. X. Xi, Y. L. Li, L. Q. Chen, A. Soukiassian, M. H. Zhu, A. R. James, J. Lettieri, D. G. Schlom, W. Tian, X. Q. Pan: Absence of low-temperature phase transitions in epitaxial BaTiO3 thin films, Phys. Rev. B 69, 174101 (2004) CrossRefGoogle Scholar
  34. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Relche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom: Room-temperature ferroelectricity in strained SrTiO3, Nature 430, 758 (2004) CrossRefGoogle Scholar
  35. A. Antons, J. B. Neaton, K. M. Rabe, D. Vanderbilt: Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles, Phys. Rev. B 71, 024102 (2005) CrossRefGoogle Scholar
  36. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306, 1005 (2004) CrossRefGoogle Scholar
  37. C. Menoret, J. M. Kiat, B. Dkhil, M. Dunlop, H. Dammak, O. Hernandez: Structural evolution and polar order in Sr1-xBax}TiO3, Phys. Rev. B 65, 224104 (2002) CrossRefGoogle Scholar
  38. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, S. E. Park: A monoclinic ferroelectric phase in the Pb(Zr1-x}Tix)O3 solid solution, Appl. Phys. Lett. 74, 2059 (1999) CrossRefGoogle Scholar
  39. B. Jaffe, W. R. Cook, H. Jaffe: Piezoelectric Ceramics (Academic Press, London 1971) p. 136 Google Scholar
  40. B. Noheda, D. E. Cox: Bridging phases at the morphotropic boundaries of lead oxide solid solutions, Phase Transitions 79, 5 (2006) CrossRefGoogle Scholar
  41. L. Bellaiche, A. Garcia, D. Vanderbilt: Finite-temperature properties of Pb(Zr1-x}Tix)O3 alloys from first principles, Phys. Rev. Lett. 84, 5427 (2000) CrossRefGoogle Scholar
  42. D. E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, Y. Yamada: Universal phase diagram for high-piezoelectric perovskite systems, Appl. Phys. Lett. 79, 400 (2001) CrossRefGoogle Scholar
  43. B. P. Burton, E. Cockayne, S. Tinte, U. V. Waghmare: First-principles-based simulations of relaxor ferroelectrics, Phase Transitions 79, 91 (2006) CrossRefGoogle Scholar
  44. R. Machado, M. G. Stachiotti, R. L. Migoni, A. H. Tera: First-principles determination of ferroelectric instabilities in {A}urivillius compounds, Phys. Rev. B 70, 214112 (2004) CrossRefGoogle Scholar
  45. J. M. Perez-Mato, M. Aroyo, A. Garcia, P. Blaha, K. Schwarz, J. Schweifer, K. Parlinski: Competing structural instabilities in the ferroelectric {Aurivillius} compounds, Phys. Rev. B 70, 214111 (2004) CrossRefGoogle Scholar
  46. C. {Araujo}, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, J. F. Scott: Fatigue-free ferroelectric capacitors with platinum electrodes, Nature 374, 627 (1995) CrossRefGoogle Scholar
  47. M. G. Stachiotti, C. O. Rodriguez, C. Ambrosch-Draxl, N. E. Christensen: Electronic structure and ferroelectricity in O9, Phys. Rev. B 61, 14434 (2000) CrossRefGoogle Scholar
  48. J. H. Haeni, C. D. Theis, D. G. Schlom, W. Tian, X. Q. Pan, H. Chang, I. Takeuchi, X. D. Xiang: Epitaxial growth of the first five members of the Srn+1TinO3n+1} {R}uddlesden–{P}opper homologous series, Appl. Phys. Lett. 78, 3292 (2001) CrossRefGoogle Scholar
  49. C. J. Fennie, K. M. Rabe: Structural and dielectric properties of TiO4 from first principles, Phys. Rev. B 68, 184111 (2003) CrossRefGoogle Scholar
  50. C. J. Fennie, K. M. Rabe: First-principles investigation of ferroelectricity in epitaxially strained TiO4, Phys. Rev. B 71, 100102 (2005) CrossRefGoogle Scholar
  51. O. Dieguez, D. Vanderbilt: First-principles calculations for insulators at constant polarization, Phys. Rev. Lett 96, 056401 (2006) CrossRefGoogle Scholar
  52. J. F. Scott, M. Zhang, R. B. Godfrey, C. Araujo, L. McMillan: Raman spectroscopy of submicron KNO3 films, Phys. Rev. B 35, 4044 (1987) CrossRefGoogle Scholar
  53. J. F. Scott: Phase transitions in very thin (<100nm) films of ceramic {Ba1-xSr_xTiO_3 (BST)} and single-crystal BaTiO3 URL: http// erro05AbstractBook.pdf (2005) Google Scholar
  54. H. M. Lu, J. R. Hardy: First principles study of phase transitions in KNO3, Phys. Rev. B 44, 7387 (1991) CrossRefGoogle Scholar
  55. B. B. van Aken, T. T. Palstra, A. Filippetti, N. A. Spaldin: The origin of ferroelectricity in magnetoelectric YMnO3, Nature Mater. 3, 164 (2004) CrossRefGoogle Scholar
  56. C. J. Fennie, K. M. Rabe: Ferroelectric transition in YMnO3 from first principles, Phys. Rev. B 72, 100103 (2005) CrossRefGoogle Scholar
  57. M. A. Subramanian, T. He, J. Z. Chen, N. S. Rogado, T. G. Calvarese, A. W. Sleight: Giant room-temperature magnetodielectric response in the electronic ferroelectric O4, Adv. Mater. 18, 1737 (2006) CrossRefGoogle Scholar
  58. C. D. Batista: Electronic ferroelectricity in the {F}alicov–{K}imball model, Phys. Rev. Lett. 89, 166403 (2002) CrossRefGoogle Scholar
  59. P. Farkasovsky: {F}alicov–{K}imball model and the problem of electronic ferroelectricity, Phys. Rev. B 65, 081102 (2002) CrossRefGoogle Scholar
  60. T. Portengen, T. Ostreich, L. J. Sham: Theory of electronic ferroelectricity, Phys. Rev. B 54, 17452 (1996) CrossRefGoogle Scholar
  61. N. Ikeda, S. Nohdo, Y. Yamada, E. Takahashi, K. Kohn: Charge ordering of O4 observed by an anomalous {X}-ray dispersion, J. Korean Phys. Soc. 32, S165 (1998) Google Scholar
  62. N. Ikeda, M. Tanaka, H. Kito, S. Sasaki, Y. Yamada: Synchrotron observation of the charge ordering and spontaneous polarization in O4, Ferroelectrics 222, 485 (1999) CrossRefGoogle Scholar
  63. N. Ikeda, K. Kohn, N. Myouga, E. Takahashi, H. Kitoh, S. Takeawa: Charge frustration and dielectric dispersion in O4, J. Phys. Soc. Jpn. 69, 1526 (2000) CrossRefGoogle Scholar
  64. N. Ikeda, R. Mori, S. Mori, K. Kohn: Dielectric and structure properties of charge competing system O4, Ferroelectrics 272, 2301 (2002) Google Scholar
  65. N. Ikeda, R. Mori, K. Kohn, M. Mizumaki, T. Akao: Structure transition and charge competition on O4, Ferroelectrics 286, 897 (2003) CrossRefGoogle Scholar
  66. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito: Ferroelectricity from iron valence ordering in the charge-frustrated system O4, Nature 436, 1136 (2005) CrossRefGoogle Scholar
  67. J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez, J. M. Greneche, R. J. Cernik, J. F. Clarke, D. A. Perkins: Electrostatically driven charge-ordering in OBO3, Nature 396, 655 (1998) CrossRefGoogle Scholar
  68. N. Suda, K. Kohn, S. Nakamura: Dielectric and magnetic properties of a mixed valence oxide BO4, Ferroelectrics 286, 877 (2003) CrossRefGoogle Scholar
  69. J. Rivas, B. Rivas-Murias, A. Fondado, J. Mira, M. A. Senaris-Rodriguez: Dielectric response of the charge-ordered two-dimensional nickelate La1.5Sr0.5NiO4, Appl. Phys. Lett. 85, 6224 (2004) CrossRefGoogle Scholar
  70. T. Tybell, C. H. Ahn, J.-M. Triscone: Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75, 856 (1999) CrossRefGoogle Scholar
  71. P. Ghosez, K. M. Rabe: A microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films, Appl. Phys. Lett. 76, 2767 (2000) CrossRefGoogle Scholar
  72. M. Dawber, P. Chandra, P. B. Littlewood, J. F. Scott: Depolarization corrections to the coercive field in thin-film ferroelectrics, J. Phys. Condens. Matter 15, 393 (2003) CrossRefGoogle Scholar
  73. J. Junquera, P. Ghosez: Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422, 506 (2003) CrossRefGoogle Scholar
  74. V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. Ramesh, P. Ghosez, K. M. Rabe: Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures, J. Appl. Phys. 100, 51609 (2006) CrossRefGoogle Scholar
  75. I. Kornev, H. Fu, L. Bellaiche: Ultrathin films of ferroelectric solid solutions under a residual depolarizing field, Phys. Rev. Lett. 93, 196104 (2004) CrossRefGoogle Scholar
  76. P. Muralt: Ferroelectric thin films for micro-sensors and actuators: A review, J. Micromech. Microeng. 10, 136 (2000) CrossRefGoogle Scholar
  77. J. F. Scott, C. A. P. {De Araujo}: Ferroelectric memories, Science 246, 1400 (1989) CrossRefGoogle Scholar
  78. W. Eerenstein, N. D. Mathur, J. F. Scott: Multiferroic and magnetoelectric materials, Nature 442, 759 (2006) CrossRefGoogle Scholar
  79. J. F. Scott: Ferroelectric Memories (Springer, Berlin 2000) Google Scholar
  80. A. Roelofs, T. Schneller, K. Szot, R. Waser: Towards the limit of ferroelectric nanosized grains, Nanotechnology 14, 250 (2003) CrossRefGoogle Scholar
  81. A. Rudiger, T. Schneller, A. Roelofs, S. Tiedke, T. Schmitz, R. Waser: Nanosize ferroelectric oxide-tracking down the superparaelectric limit, Appl. Phys. A 80, 1247 (2005) CrossRefGoogle Scholar
  82. C. Lichtensteiger, J.-M. Triscone, J. Junquera, P. Ghosez: Ferroelectricity and tetragonality in ultrathin PbTiO3 films, Phys. Rev. Lett. 94, 047603 (2005) CrossRefGoogle Scholar
  83. D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, C. Thompson: Ferroelectricity in ultrathin perovskite films, Science 304, 1650 (2004) CrossRefGoogle Scholar
  84. S. Tideke, T. Schmitz, K. Prime, A. Roelofs, T. Schneller, U. Kall, R. Waser, C. S. Ganpule, V. Nagarajan, A. Stanishevsky, R. Ramesh: Direct hysteresis measurements of single nanosized ferroelectric capacitors contacted with an atomic force microscope, Appl. Phys. Lett 79, 3678 (2001) CrossRefGoogle Scholar
  85. M. Alexe, C. Harnagea, U. Gosele: Patterning and switching of nanosize ferroelectric memory cells, Appl. Phys. Lett. 75, 1793 (1999) CrossRefGoogle Scholar
  86. M. Alexe, D. Hesse: Self-assembled nanoscale ferroelectrics, J. Mater. Sci. 41, 1 (2006) CrossRefGoogle Scholar
  87. Y. Luo, I. Szafraniak, N. D. Zakharov, V. Nagarajan, M. Steinhart, R. B. Wehrspohn, J. H. Wendorff, R. Ramesh, M. Alexe: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate, Appl. Phys. Lett. 83, 440 (2003) CrossRefGoogle Scholar
  88. F. D. Morrison, L. Ramsay, J. F. Scott: High aspect ratio piezoelectric strontium-bismuth-tantalate nanotubes, J. Phys. Condens. Matter 15, L527 (2003) CrossRefGoogle Scholar
  89. M. M. Saad, P. Baxter, R. M. Bowman, J. M. Gregg, F. D. Morrison, J. F. Scott: Intrinsic dielectric response in ferroelectric nano-capacitors, J. Phys. Condens. Matter 16, L451 (2004) CrossRefGoogle Scholar
  90. M. M. Saad, P. Baxter, A. Schilling, T. Adams, X. Zhu, R. M. Bowman, J. M. Gregg, P. Zubko, F. D. Morrison, J. F. Scott: Exploring the fundamental effects of miniaturization on ferroelectrics by focused ion beam processing of single crystal material, J. Physique IV 128, 63 (2005) CrossRefGoogle Scholar
  91. A. Schilling, T. B. Adams, R. M. Bowman, J. M. Gregg, G. Catalan, J. F. Scott: Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics, Phys. Rev. B 74, 024115 (2006) CrossRefGoogle Scholar
  92. C. H. Ahn, J.-M. Triscone, J. Mannhart: Electric field effect in correlated oxide systems, Nature 424, 1015 (2003) CrossRefGoogle Scholar
  93. P. Paruch, T. Tybell, J.-M. Triscone: Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films, Appl. Phys. Lett. 79, 530 (2001) CrossRefGoogle Scholar
  94. A. K. S. Kumar, P. Paruch, J. M. Triscone, W. Daniau, S. Ballandras, L. Pellegrino, D. Marre, T. Tybell: High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers, Appl. Phys. Lett. 85, 1757 (2004) CrossRefGoogle Scholar
  95. K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, J.-M. Triscone: Local switching of two-dimensional superconductivity using the ferroelectric field effect, Nature 441, 195 (2006) CrossRefGoogle Scholar
  96. B. A. Strukov: Electrocaloric effect in single-crystal triglycine sulfate, Sov. Phys. Crystallogr. 11, 757 (1967) Google Scholar
  97. B. A. Tuttle, D. A. Payne: The effects of microstructure on the electrocaloric properties of {Pb(Zr,Sn,Ti)O_3} ceramics, Ferroelec. 37, 603 (1981) Google Scholar
  98. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur: Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science 311, 1270 (2006) CrossRefGoogle Scholar
  99. J. F. Scott: Applications of modern ferroelectrics, Science 315, 954 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Karin M. Rabe
    • 1
    Email author
  • Matthew Dawber
    • 2
  • Céline Lichtensteiger
    • 2
  • Charles H. Ahn
    • 3
  • Jean-Marc Triscone
    • 2
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  2. 2.Condensed Matter Physics DepartmentUniversity of GenevaGeneva 4Switzerland
  3. 3.Departments of Applied Physics and PhysicsYale UniversityNew HavenUSA

Personalised recommendations