Skip to main content
  • 3808 Accesses

Abstract

We turn now to the description of the building blocks of quantum information theory. We introduce the quantum analog of the bit—qubit, single- and multiple-qubit logic gates and quantum circuits performing information processing. Any introduction to quantum information theory would be incomplete if it did not contain a discussion on the peculiar properties of the entanglement, which results, on the one hand, in the notorious non-locality of quantum mechanics, and on the other hand, in decoherence already studied in previous chapters in the general framework of a small quantum system coupled to a large reservoir. A significant part of this chapter is therefore devoted to the analysis of the role of entanglement in the fundamental tests of quantum mechanics, as well as its quantum information applications such as cryptography, teleportation and dense coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 8

  1. V. Scarani, S. Iblisdir, N. Gisin and A. Acin, Quantum cloning, Rev. Mod. Phys. 77, 1225 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. O. Scully, B. G. Englert and H. Walther, Quantum optical tests of complementarity, Nature 351 111 (1991).

    Article  ADS  Google Scholar 

  3. A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  4. N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696 (1935).

    Article  ADS  MATH  Google Scholar 

  5. J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964); J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38, 447 (1966).

    Google Scholar 

  6. J. F. Clauser, M. A. Horne, A. Shimony and R.A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969); J. F. Clauser and M. A. Horne, Experimental consequences of objective local theories, Phys. Rev. D 10, 526 (1974).

    Article  ADS  Google Scholar 

  7. A. Aspect, P. Grangier and G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities, Phys. Rev. Lett. 49, 91 (1982).

    Article  ADS  Google Scholar 

  8. A. Zeilinger, Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, S288 (1999); R.Werner and M. Wolf, Bell inequalities and entanglement, Quant. Inf. Comput. 1(3) 1, (2001).

    Article  Google Scholar 

  9. D. M. Greenberger, M. Horne and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Katafos (Kluwer Academic, 1988), p 73; D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58, 1131 (1990).

    Google Scholar 

  10. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. H. Bennett and S. J. Wiesner, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76, 722 (1996).

    Article  ADS  Google Scholar 

  13. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, 1984) p. 175; C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992); A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991); C. H. Bennett, G. Brassard and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68, 557 (1992).

    Google Scholar 

  14. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  15. D. C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, Nature 404, 247 (2000).

    Article  ADS  Google Scholar 

  16. A. Galindo and M. A. Martin-Delagado, Information and computation: Classical and quantum aspects, Rev. Mod. Phys. 74, 347 (2002).

    Article  ADS  Google Scholar 

  17. C. E. Shannon, A mathematical theory of communication, Bell Syst. Thech. J. 27, 379 (1948); 27, 623 (1948); 28, 656 (1949).

    MathSciNet  MATH  Google Scholar 

  18. B. Schumacher, Quantum coding, Phys. Rev. A 51, 2738 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  19. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  20. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80, 2245 (1998); P. Rungta, V. Bužek, C. M. Caves, M. Hillery and G. J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Fundamentals of Quantum Information. In: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34572-5_8

Download citation

Publish with us

Policies and ethics