Advertisement

Bambara Groundnut

  • S. Basu
  • J. A. Roberts
  • S. N. Azam-Ali
  • S. Mayes
Part of the Genome Mapping and Molecular Breeding in Plants book series (GENMAPP, volume 3)

Keywords

Amplify Fragment Length Polymorphism Common Bean Double Haploid Segregation Distortion Amplify Fragment Length Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den Bosch B, Pot J, Kuiper MT (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271PubMedCrossRefGoogle Scholar
  2. Alzate-Marin AL, Costa MR, Sortorato A, Del Peloso MJ, de Barros EG, Moreira MA (2003) Genetic variability and pedigree analysis of Brazilian common bean elite genotypes. Scientia Agricola 60:283–290CrossRefGoogle Scholar
  3. Amadou HI, Bebelli PJ, Kaltsikes PJ (2001) Genetic diversity in bambara groundnut (Vigna subterranea L.) germplasm revealed by RAPD markers. Genome 45:995–999CrossRefGoogle Scholar
  4. Aregheore EM (1992) A review of toxicity factors in some food and feedingstuffs in the nutrition of man and livestock in Nigeria. Vet Hum Toxicol 34:71–73PubMedGoogle Scholar
  5. Begemann F (1988) Ecogeographic differentiation of bambara groundnut (Vigna subterranea) in the collection of the International Institute of Tropical Agriculture (I.I.T.A.). Wissenschaftlicher Fachverlag, GiessenGoogle Scholar
  6. Brücher H (1998) The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P (ed) Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, pp 185–214Google Scholar
  7. Cattan-Toupance I, Michalakis Y, Neema C (1998) Genetic structure of wild bean populations in their South-Andean centre of origin. Theor Appl Genet 96:844–851CrossRefGoogle Scholar
  8. Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207PubMedGoogle Scholar
  9. Doebley J (1992) Molecular systematics and crop evolution. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular Systematics of Plants. Chapman Hall, New York, pp 202–222Google Scholar
  10. Doku EV (1968) Flowering, pollination and pod formation in bambara groundnut (Voandzeia subterranea) in Ghana. Exp Agric 4:41–48CrossRefGoogle Scholar
  11. Doku EV (1969) Growth habit and pod production in bambara groundnut (Voandzeia subterranea). Ghana J Agric Sci 2:91–95Google Scholar
  12. Donath WF, Spruyt JP (1933) Het anti-beri-beri vitaminegehalte van katjang bogor (Voandzeia subterranea (L) Thouars). [The content of anti-beriberi vitamin in kachang bogor (Voandzeia subterranea (L.) Thouars)]. Landbouw (Buitenzorg, Java) 9:133–144. Dutch (English summary)Google Scholar
  13. Elia FM, Mwandemele OD (1986) The effect of water deficit droughts on some plant characters in bambara groundnut (Vigna subterranea Thouars). Trop Grain Legume Bull 33:45–50Google Scholar
  14. EU (2004) Increasing the productivity of bambara groundnut (Vigna subterannea (L.) Verdc.) for sustainable food production in semi-arid Africa. Final Report of the EU BAMFOOD project. Contract number ICA4-CT-2000-30002Google Scholar
  15. Evans IM, Boulter D (1974) Chemical methods suitable for screening for protein content and quality in cowpea (Vigna unguiculata) meals. J Sci Food Agric 25:311–322PubMedCrossRefGoogle Scholar
  16. Ferrao JEM, Ferrao AMBC, Antunes AMG (1987) A mancarra dos Bijagós (Vigna subterranea). Aspectos do seu valor nutricional. [Bambara groundnut (Vigna subterranea). Aspects of its nutritional value]. Garcia de Orta, Série de Estudos Agronómicos 14:35–39Google Scholar
  17. Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Taylor PWJ (2003) QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107:1257–1265PubMedCrossRefGoogle Scholar
  18. Freyre R, Skroch PW, Geffroy V, Adam-Blondon A-F, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856CrossRefGoogle Scholar
  19. Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27:51–94Google Scholar
  20. Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468Google Scholar
  21. Gepts P, Papa R (2002) Evolution during domestication. In: Encyclopedia of Life Sciences. Nature Publishing, LondonGoogle Scholar
  22. Glew RH, Vanderjagt DJ, Lockett C, Grivetti LE, Smith GC, Pastuszyn A, Millson M (1997) Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. J Food Comp Anal 10:205–217CrossRefGoogle Scholar
  23. Harlen JR (1977) The origins of cereal agriculture in the old world. In: Reed A (ed) Origins of Agriculture. Mouton, The Hague, The Netherlands, pp 357–383Google Scholar
  24. Hepper FN (1963) The bambara groundnut (Voandzeia subterranea) and Kersting’s groundnut (Kerstingiella geocarpa) wild in west Africa. Kew Bull 16:395–407Google Scholar
  25. Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691CrossRefGoogle Scholar
  26. Johnson WC, Gepts P (1998) Influence of epistatis and diverse evolution on wide crosses of common bean. In: Int Conf on the Status of Plant and Animal Genome Res, San Diego, Summary W 83Google Scholar
  27. Karikari SK (1972) Correlation studies between yield and some agronomic characters in bambara groundnut (Voandzeia subterranea Thouars). Ghana J Agric Sci 5:79–83Google Scholar
  28. Koenig R, Singh SP, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 44:50–60Google Scholar
  29. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182PubMedCrossRefGoogle Scholar
  30. Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676CrossRefGoogle Scholar
  31. Lakhanpaul S, Babu CR (1991) Genome size and evolution in Asiatic Vigna savi. In: Symp on Grain Legumes, New Delhi, pp 47–57Google Scholar
  32. Linnemann AR (1994) Photothermal regulation of phonological development and growth in bambara groundnut (Vigna subterranea (L.) Verdc.). PhD thesis, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  33. Mackay IJ, Caligari PDS (2000) Efficiencies of F2 and backcross generations for bulked segregant analysis using dominant markers. Crop Sci 40:626–630CrossRefGoogle Scholar
  34. Massawe FJ, Dickinson M, Roberts JA, Azam-Ali SN (2002) Genetic diversity in Bambara groundnut (Vigna subterranea (L) Verdc) landraces revealed by AFLP markers. Genome 45:1175–1180PubMedCrossRefGoogle Scholar
  35. Massawe FJ, Schenkel W, Basu S, Temba EM (2004) Artificial hybridization in bambara groundnut (Vigna subterranea (L.) Verdc.). In: Proc Int Bambara Groundnut Symp, 5–12 September 2003, Gaborone, Botswana, pp 193–209Google Scholar
  36. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillespie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188PubMedCrossRefGoogle Scholar
  37. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119CrossRefGoogle Scholar
  38. Pasquet RS (2000) Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101:211–219CrossRefGoogle Scholar
  39. Pasquet RS (2004) Bambara groundnut and cowpea genepool organization and domestication. In: Conf Proc of the Intl Bambara Groundnut Symp, 5–12 September 2003, Gaborone, Botswana, pp 265–274Google Scholar
  40. Pasquet RS, Fotso M (1997) The ORSTOM bambara groundnut collection. In: Heller J, Begemann F, Mushonga J (ed) Bambara Groundnut, Vigna subterranea (L.) Verdc. IPGRI. Rome, Italy, pp 119–123Google Scholar
  41. Pasquet RS, Schwedes S, Gepts P (1999) Isozyme Diversity in Bambara Groundnut. Crop Sci 39:1228–1236CrossRefGoogle Scholar
  42. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287PubMedGoogle Scholar
  43. Qi X, Stam P, Lindhout P (1998) Use of locus specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384CrossRefGoogle Scholar
  44. Rassel A (1960) Le voandzou Voandzeia subterranea Thouars et sa culture au Kwango. Bull Agr Congo Belge Ruanda-Urundi 51:1–26Google Scholar
  45. Santalla Marta, Menendez-Sevillano MC, Monteagudo AB, De Ron AM (2004) Genetic diversity of Argentinean common bean and its evolution during domestication. Euphytica 135:75–87CrossRefGoogle Scholar
  46. Smartt J (1988) Morphological, physiological, and biochemical changes in Phaseolus beans under domestication. In: Gepts P (ed) Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, pp 143–161Google Scholar
  47. Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128PubMedCrossRefGoogle Scholar
  48. Sonnante G, Stockton T, Nodari RO, Becerra Velasquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635CrossRefGoogle Scholar
  49. Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics, preprint, 16 January 2005Google Scholar
  50. Tanksley SD (1993) Mapping Polygenes. Annu Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  51. Ubi BE, Mignouna H, Obigbesan G (2001) Segregation for seed weight, pod length and days to flowering following a cowpea cross. African Crop Sci J 9:463–470Google Scholar
  52. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740PubMedGoogle Scholar
  53. Vietmeyer ND (1978) Poor people’s crops. World Farm 21:6–9Google Scholar
  54. Vietmeyer ND (1986) Lesser-known plants of potential use in agriculture and forestry. Science 232:1379–1384CrossRefPubMedGoogle Scholar
  55. Vodkin LO, Khanna A, Shealy R, Clough SJ, Gonzalez DO, Philip R, Zabala G, Thibaud-Nissen F, Sidarous M, Strömvik MV, Shoop E, Schmidt C, Retzel E, Erpelding J, Shoemaker RC, Rodriguez-Huete AM, Polacco JC, Coryell V, Keim P, Gong G, Liu L, Pardinas J, Schweitzer P (2004) Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. BMC Genomics 5:73PubMedCrossRefGoogle Scholar
  56. Wang J, Gai J (1997) Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 progeny. Yi Chuan Xue Bao 24:432–440PubMedGoogle Scholar
  57. Weber J, May P (1989) Abundant class of human DNA polymorphisms which can be types using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  58. Xu RQ, Tomooka N, Vaughan DA, Doi K (2000) The Vigna angularis complex: Genetic variation and relationships revealed by RAPD analysis, and their implications for in situ conservation and domestication. Genetic Resour Crop Evol 47:123–134CrossRefGoogle Scholar
  59. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar
  60. Zeven AC, Zhukovsky PM (1975) Dictionary of cultivated plants and their centers of diversity, excluding ornamentals, forest trees and lower plants. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, p 120Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. Basu
    • 1
  • J. A. Roberts
    • 2
  • S. N. Azam-Ali
    • 1
  • S. Mayes
    • 1
  1. 1.Division of Agricultural and Environmental Sciences, School of BiosciencesUniversity of NottinghamLoughborough, LeicestershireUK
  2. 2.Division of Plant Sciences, School of BiosciencesUniversity of NottinghamLoughborough, LeicestershireUK

Personalised recommendations