Signal Transduction Inhibitors in Chronic Myeloid Leukemia

  • Michael W. N. Deininger
Part of the Hematologic Malignancies book series (HEMATOLOGIC)


Chronic myeloid leukemia (CML) is caused by Bcr-Abl, a constitutively active tyrosine kinase that activates multiple signaling pathways and is central to disease pathogenesis. Efforts to develop small molecule Bcr-Abl inhibitors led to the discovery of imatinib, a 2-phenylaminopyrimidine that inhibits Bcr-Abl with high selectivity and has rapidly become standard therapy for CML. Responses in newly diagnosed chronic phase patients tend to be durable, but there is a high relapse rate in advanced disease, which is mostly due to point mutations in critical residues that interfere with drug binding, thereby reactivating Bcr-Abl. The fact that Bcr-Abl remains central to disease pathogenesis has stimulated a search for novel Abl kinase inhibitors with activity against mutant Bcr-Abl. Nilotinib, developed from an imatinib backbone, and dasatinib, a dual Abl/Src kinase inhibitor, are currently in phase I/II clinical trials of patients with imatinib-resistant CML, with very encouraging results. While Bcr-Abl is the most attractive target, there are multiple signal transduction pathways downstream that can be intercepted with specific inhibitors, such as blockers of farnesyl transferase and mTOR. Some of these compounds are in clinical trials of imatinib-resistant patients, but results are not yet available. Although imatinib is probably not capable of eradicating CML stem cells, for many patients this agent has turned a life-threatening disease into a chronic disorder that does not significantly affect quality of life.


Chronic Myeloid Leukemia Imatinib Mesylate Signal Transduction Inhibitor Farnesyl Transferase Inhibitor Myeloid Blast Crisis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, Zhang G, Hur W, Ding S, Manley P, Mestan J, Fabbro D, Gray NS (2006) Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2:95–102PubMedCrossRefGoogle Scholar
  2. Al Ali HK, Heinrich MC, Lange T, Krahl R, Mueller M, Muller C, Niederwieser D, Druker BJ, Deininger MW (2004) High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J 5:55–60CrossRefGoogle Scholar
  3. Anafi M, Gazit A, Gilon C, Ben Neriah Y, Levitzki A (1992) Selective interactions of transforming and normal abl proteins with ATP, tyrosine-copolymer substrates, tyrphostins. J Biol Chem 267:4518–4523PubMedGoogle Scholar
  4. Anafi M, Gazit A, Zehavi A, Ben Neriah Y, Levitzki A (1993) Tyrphostin-induced inhibition of p210bcr-abl tyrosine kinase activity induces K562 to differentiate. Blood 82:3524–3529PubMedGoogle Scholar
  5. Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275:30451–30457PubMedCrossRefGoogle Scholar
  6. Ashar HR, James L, Gray K, Carr D, McGuirk M, Maxwell E, Black S, Armstrong L, Doll RJ, Taveras AG, Bishop WR, Kirschmeier P (2001) The farnesyl transferase inhibitor SCH 66336 induces a G(2) → M or G(1) pause in sensitive human tumor cell lines. Exp Cell Res 262:17–27PubMedCrossRefGoogle Scholar
  7. Azam M, Latek RR, Daley GQ (2003) Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112:831–843PubMedCrossRefGoogle Scholar
  8. Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408PubMedCrossRefGoogle Scholar
  9. Barthe C, Cony-Makhoul P, Melo JV, Mahon JR (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293:2163PubMedCrossRefGoogle Scholar
  10. Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P (2005) The FTI SCH66336 (Lonafarnib) inhibits Rheb farnesylation and mTOR signaling: Role in FTI enhancement of taxane and tamoxifen antitumor activity. J Biol Chem 280:31101–31108PubMedCrossRefGoogle Scholar
  11. Beran M, Cao X, Estrov Z, Jeha S, Jin G, O’Brien S, Talpaz M, Arlinghaus RB, Lydon NB, Kantarjian H (1998) Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin Cancer Res 4:1661–1672PubMedGoogle Scholar
  12. Blagosklonny MV (2004) Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle 3:1537–1542PubMedGoogle Scholar
  13. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99:3472–3475PubMedCrossRefGoogle Scholar
  14. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56:100–104PubMedGoogle Scholar
  15. Burger H, Nooter K (2004) Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle 3:1502–1505PubMedGoogle Scholar
  16. Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL (2005) Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci 102:3395–3400PubMedCrossRefGoogle Scholar
  17. Burley S (2005) Application of FAST™ fragment-based lead discovery and structure-guided design to discovery of small molecule inhibitors of BCR-ABL tyrosine kinase active against the T315I imatinib-resistant mutant. Blood 106:206aGoogle Scholar
  18. Chandra J, Tracy J, Loegering D, Flatten K, Verstovsek S, Beran M, Gorre M, Estrov Z, Donato N, Talpaz M, Sawyers C, Bhalla K, Karp J, Sausville E, Kaufmann SH (2005) Adaphostin-induced oxidative stress overcomes bcr/abl mutation-dependent and-independent imatinib resistance. Blood 15:2501–2506Google Scholar
  19. Choi YJ, Qing W, White S, Gorre M, Sawyers CL, Bollag G (2002) Imatinib-resistant cell lines are sensitive to the Raf inhibitor BAY 43-9006. Blood 100:369ACrossRefGoogle Scholar
  20. Chu S, Holtz M, Gupta M, Bhatia R (2004) BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 103:3167–3174PubMedCrossRefGoogle Scholar
  21. Chu S, Xu H, Shah NP, Snyder DS, Forman SJ, Sawyers CL, Bhatia R (2005) Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 105:2093–2098PubMedCrossRefGoogle Scholar
  22. Corbin AS, Buchdunger E, Pascal F, Druker BJ (2002) Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571. J Biol Chem 277:32214–32219PubMedCrossRefGoogle Scholar
  23. Corbin AS, Rosee PL, Stoffregen EP, Druker BJ, Deininger MW (2003) Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 101:4611–4614PubMedCrossRefGoogle Scholar
  24. Cortes J, Giles F, O’Brien S, Beran M, McConkey D, Wright J, Schenkein D, Patel G, Verstovsek S, Pate O, Talpaz M, Kantarjian H (2003a) Phase II study of bortezomib (Velcade, formerly PS-341) for patients with imatinib-refractory chronic myeloid leukemia (CML) in chronic (CP) or accelerated phase (AP). Blood 312abGoogle Scholar
  25. Cortes J, Giles F, O’Brien S, Thomas D, Garcia-Manero G, Rios MB, Faderl S, Verstovsek S, Ferrajoli A, Freireich EJ, Talpaz M, Kantarjian H (2003b) Result of high-dose imatinib mesylate in patients with Philadelphia chromosome — positive chronic myeloid leukemia after failure of interferon-a. Blood 102:83–86PubMedCrossRefGoogle Scholar
  26. Cortes J, O’Brien S, Kantarjian H (2004) Discontinuation of imatinib therapy after achieving a molecular response. Blood 104:2204–2205PubMedCrossRefGoogle Scholar
  27. Cortez D, Kadlec L, Pendergast AM (1995) Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 15:5531–5541PubMedGoogle Scholar
  28. Cortez D, Reuther GW, Pendergast AM (1997) The BCR-ABL tyrosine kinase activates mitotic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 15:2333–2342PubMedCrossRefGoogle Scholar
  29. Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro D, Furet P, Liebetanz J, Mestan J, Manley PW (2004) Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 4:285–299PubMedCrossRefGoogle Scholar
  30. Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE (2005) hOCT 1 and resistance to imatinib. Blood 106:1133–1134PubMedCrossRefGoogle Scholar
  31. Dai Y, Rahmani M, Pei XY, Dent P, Grant S (2004) Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and-independent mechanisms. Blood 104:509–518PubMedCrossRefGoogle Scholar
  32. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830PubMedCrossRefGoogle Scholar
  33. Deininger M, Goldman JM, Lydon NB, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL positive cells. Blood 90:3691–3698PubMedGoogle Scholar
  34. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653PubMedCrossRefGoogle Scholar
  35. Deininger MW, Holyoake TL (2005) Can we afford to let sleeping dogs lie? Blood 105:1840–1841PubMedCrossRefGoogle Scholar
  36. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356PubMedGoogle Scholar
  37. Deininger MW, O’Brien SG, Ford JM, Druker BJ (2003) Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol 21:1637–1647PubMedCrossRefGoogle Scholar
  38. Dengler J, von Bubnoff N, Decker T, Peschel C, Duyster J (2005) Combination of imatinib with rapamycin or RAD001 acts synergistically only in Bcr-Abl-positive cells with moderate resistance to imatinib. Leukemia 19:1835–1838PubMedCrossRefGoogle Scholar
  39. Dinulescu DM, Wood LJ, Shen L, Loriaux M, Corless CL, Gross AW, Ren R, Deininger MW, Druker BJ (2003) c-CBL is not required for leukemia induction by Bcr-Abl in mice. Oncogene 22:8852–8860PubMedCrossRefGoogle Scholar
  40. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101:690–698PubMedCrossRefGoogle Scholar
  41. Dorsey JF, Jove R, Kraker AJ, Wu J (2000) The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Res 60:3127–3131PubMedGoogle Scholar
  42. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566PubMedCrossRefGoogle Scholar
  43. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M (2001a) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042PubMedCrossRefGoogle Scholar
  44. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001b) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRefGoogle Scholar
  45. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L, Rossi F, Gianazza E, Brueggen J, Cozens R, Pioltelli P, Pogliani E, Corneo G, Formelli F, D’Incalci M (2000) Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 92:1641–1650PubMedCrossRefGoogle Scholar
  46. Gaston I, Johnson KJ, Oda T, Bhat A, Reis M, Langdon W, Shen L, Deininger MW, Druker BJ (2004) Coexistence of phosphotyrosine-dependent and-independent interactions between Cbl and Bcr-Abl. Exp Hematol 32:113–121PubMedCrossRefGoogle Scholar
  47. Gazit A, Yaish P, Gilon C, Levitzki A (1989) Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 32:2344–2352PubMedCrossRefGoogle Scholar
  48. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH (2002) Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 359:1577–1578PubMedCrossRefGoogle Scholar
  49. Goetz AW, van der K H, Maya R, Oren M, Aulitzky WE (2001) Requirement for Mdm2 in the survival effects of Bcr-Abl and interleukin 3 in hematopoietic cells. Cancer Res 61:7635–7641PubMedGoogle Scholar
  50. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J, Frost P, Ye F, Boschelli DH, Boschelli F (2003) SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 63:375–381PubMedGoogle Scholar
  51. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880PubMedCrossRefGoogle Scholar
  52. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL (2002) BCR-ABL point mutants isolated from patients with imatinib mesylateresistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100:3041–3044PubMedCrossRefGoogle Scholar
  53. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325PubMedCrossRefGoogle Scholar
  54. Guilhot F (2004) Sustained durability of responses plus high rates of cytogenetic responses result in long-term benefit for newly diagnosed chronic phase chronic myeloid leukemia (CML-CP) treated with imatinib (IM) therapy: update from the IRIS Study. Blood 104:10aGoogle Scholar
  55. Gumireddy K, Baker SJ, Cosenza SC, John P, Kang AD, Robell KA, Reddy MV, Reddy EP (2005) A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci 102(6):1992–1997PubMedCrossRefGoogle Scholar
  56. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G (2003) A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112:845–857PubMedCrossRefGoogle Scholar
  57. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS (2002) The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 99:2957–2968PubMedCrossRefGoogle Scholar
  58. Hegedus T, Orfi L, Seprodi A, Varadi A, Sarkadi B, Keri G (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 1587:318–325PubMedGoogle Scholar
  59. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932PubMedGoogle Scholar
  60. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190–2196PubMedCrossRefGoogle Scholar
  61. Hofmann WK, Jones LC, Lemp NA, de Vos S, Gschaidmeier H, Hoelzer D, Ottmann OG, Koeffler HP (2002) Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood 99:1860–1862PubMedCrossRefGoogle Scholar
  62. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064PubMedGoogle Scholar
  63. Hoover RR, Mahon FX, Melo JV, Daley GQ (2002) Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 100:1068–1071PubMedCrossRefGoogle Scholar
  64. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D, Hallek M, Van Etten RA, Li S (2004) Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36:453–461PubMedCrossRefGoogle Scholar
  65. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, Gathmann I, Bolton AE, van Hoomissen IC, Goldman JM, Radich JP (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432PubMedCrossRefGoogle Scholar
  66. Huron DR, Gorre ME, Kraker AJ, Sawyers CL, Rosen N, Moasser MM (2003) A novel pyridopyrimidine inhibitor of Abl kinase is a picomolar inhibitor of Bcr-Abl-driven K562 cells and is effective against STI571-resistant Bcr-Abl mutants. Clin Cancer Res 9:1267–1273PubMedGoogle Scholar
  67. Jiang X, Zhao Y, Chan P, Eaves A, Eaves C (2003) Quantitative real-time RT-PCR analysis shows BCR-ABL expression progressively decreases as primitive leukemic cells from patients with chronic myeloid leukemia (CML) differentiate in vivo. Exp Hematol 31: 228–229Google Scholar
  68. Jorgensen HG, Allan EK, Graham SM, Godden JL, Richmond L, Elliott MA, Mountford JC, Eaves CJ, Holyoake TL (2005) Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro. Leukemia 19:1184–1191PubMedCrossRefGoogle Scholar
  69. Kang S, Song J, Kang J, Kang H, Lee D, Lee Y, Park D (2005) Suppression of the alpha-isoform of class II phosphoinositide 3-kinase gene expression leads to apoptotic cell death. Biochem Biophys Res Commun 329:6–10PubMedCrossRefGoogle Scholar
  70. Kantarjian HM, O’Brien SM, Keating M, Beran M, Estey E, Giralt S, Kornblau S, Rios MB, de Vos D, Talpaz M (1997) Results of decitabine therapy in the accelerated and blastic phases of chronic myelogenous leukemia. Leukemia 11:1617–1620PubMedCrossRefGoogle Scholar
  71. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652PubMedCrossRefGoogle Scholar
  72. Kantarjian H, Talpaz M, O’Brien S, Garcia-Manero G, Verstovsek S, Giles F, Rios MB, Shan J, Letvak L, Thomas D, Faderl S, Ferrajoli A, Cortes J (2004) High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 103:2873–2878PubMedCrossRefGoogle Scholar
  73. Kantarjian H, Ottmann OG, Cortes J, Wassmann B, Wunderle L, Bhalla K, Jones D, Hochhaus A, Rae P, Alland L, Dugan M, Albitar M, Giles F (2005) AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has significant activity in imatinib-resistant chronic myeloid leukemia (CML) or Philadelphia-chromosome positive acute lymphoid leukemia (Ph + ALL). Blood 106:15aGoogle Scholar
  74. Kardinal C, Konkol B, Lin H, Eulitz M, Schmidt EK, Estrov Z, Talpaz M, Arlinghaus RB, Feller SM (2001) Chronic myelogenous leukemia blast cell proliferation is inhibited by peptides that disrupt Grb2-SoS complexes. Blood 98:1773–1781PubMedCrossRefGoogle Scholar
  75. Kaur G, Sausville EA (1996) Altered physical state of p210bcr-abl in tyrphostin AG957-treated K562 cells. Anticancer Drugs 7:815–824PubMedCrossRefGoogle Scholar
  76. Kaur G, Gazit A, Levitzki A, Stowe E, Cooney DA, Sausville EA (1994) Tyrphostin induced growth inhibition: correlation with effect on p210bcr-abl autokinase activity in K562 chronic myelogenous leukemia. Anticancer Drugs 5:213–222PubMedCrossRefGoogle Scholar
  77. Kaur G, Narayanan VL, Risbood PA, Hollingshead MG, Stinson SF, Varma RK, Sausville EA (2005) Synthesis, structure-activity relationship, p210(bcr-abl) protein tyrosine kinase activity of novel AG 957 analogs. Bioorg Med Chem 13:1749–1761PubMedCrossRefGoogle Scholar
  78. Kharas MG, Fruman DA (2005) ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res 65:2047–2053PubMedCrossRefGoogle Scholar
  79. Kim Y-J, Kim D-W, Lee S, Eom K-S, Min C-K, Kim H-J, Lee J-W, Min W-S, Kim C-C (2004) Monitoring of BCR-ABL transcript levels after discontinuation of imatinib therapy in chronic myelogenous leukemia patients achieving complete cytogenetic response. Blood 104:255bGoogle Scholar
  80. Komatsu N, Watanabe T, Uchida M, Mori M, Kirito K, Kikuchi S, Liu Q, Tauchi T, Miyazawa K, Endo H, Nagai T, Ozawa K (2003) A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 278:6411–6419PubMedCrossRefGoogle Scholar
  81. Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HD, Moore CW (2000) Biochemical and cellular effects of c-Src kinase-selective pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol 60:885–898PubMedCrossRefGoogle Scholar
  82. La Rosee P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ (2002) Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 62:7149–7153PubMedGoogle Scholar
  83. La Rosee P, Johnson K, Corbin AS, Stoffregen EP, Moseson EM, Willis S, Mauro MM, Melo JV, Deininger MW, Druker BJ (2004) In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood 103:208–215PubMedCrossRefGoogle Scholar
  84. Lange T, Niederwieser DW, Deininger MW (2003) Residual disease in chronic myeloid leukemia after induction of molecular remission. N Engl J Med 349:1483–1484PubMedCrossRefGoogle Scholar
  85. Lange T, Bumm T, Mueller M, Otto S, Al Ali HK, Grommisch L, Musiol S, Franke C, Krahl R, Niederwieser D, Deininger MW (2005) Durability of molecular remission in chronic myeloid leukemia patients treated with imatinib vs allogeneic stem cell transplantation. Leukemia 19:1262–1265PubMedCrossRefGoogle Scholar
  86. le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R, Formelli F, Gambacorti-Passerini C (1999) In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91:163–168PubMedCrossRefGoogle Scholar
  87. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C (2000) Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 95:1758–1766PubMedGoogle Scholar
  88. le Coutre P, Kreuzer KA, Na IK, Lupberger J, Holdoff M, Appelt C, Schwarz M, Muller C, Gambacorti-Passerini C, Platzbecker U, Bonnet R, Ehninger G, Schmidt CA (2002) Determination of alpha-1 acid glycoprotein in patients with Ph+ chronic myeloid leukemia during the first 13 weeks of therapy with STI571. Blood Cells Mol Dis 28:75–85PubMedCrossRefGoogle Scholar
  89. Lee FY, Lombardo L, Borzilleri R, Camuso A, Castaneda S, Donato NJ, Fager K, Flefleh C, Gray H, Inigo I, Kan D, Luo R, Pang S, Wem ML, Wild R, Wong TW, Talpaz M, Kramer R (2004) BMS-354825 — a potent SRC/ABL kinase inhibitor possessing curative efficacy against imatinib sensitive and resistant human CML models in vivo. AACR meeting 2004Google Scholar
  90. Leguay T, Desplat V, Barthe C, Rousselot P, Reiffers J, Marit G, Mahon FX (2003) Study of mutations in the ATP binding domain and the SH2/SH3 domain of BCR-ABL in 43 chronic myeloid leukemia patients treated by imatinib mesylate (STI571). Blood 100:369aGoogle Scholar
  91. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA (2001) Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 97:1442–1450PubMedCrossRefGoogle Scholar
  92. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082PubMedCrossRefGoogle Scholar
  93. Ly C, Arechiga AF, Melo JV, Walsh CM, Ong ST (2003) Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 63:5716–5722PubMedGoogle Scholar
  94. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96: 1070–1079PubMedGoogle Scholar
  95. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101:2368–2373PubMedCrossRefGoogle Scholar
  96. Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14:3136–3145PubMedGoogle Scholar
  97. Mauro MJ, Deininger MWN, O’Dwyer ME, Maziarz RT, Walker T, Kurilik G, Druker BJ (2003) Phase I/II study of arsenic trioxide (trisemox) in combination with imatinib mesylate (Gleevec, STI571) in patients with Gleevec-resistant chronic myelogenous leukemia in chronic phase. Blood 100:781aGoogle Scholar
  98. Mauro MJ, Druker BJ, Maziarz RT (2004) Divergent clinical outcome in two CML patients who discontinued imatinib therapy after achieving a molecular remission. Leuk Res 28:S71–S73PubMedCrossRefGoogle Scholar
  99. McWhirter JR, Wang JY (1993) An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 12:1533–1546PubMedGoogle Scholar
  100. McWhirter JR, Galasso DL, Wang JY (1993) A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 13:7587–7595PubMedGoogle Scholar
  101. Melo JV, Deininger MW (2004) Biology of chronic myelogenous leukemia-signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 18:545–viiiPubMedCrossRefGoogle Scholar
  102. Merante S, Orlandi E, Bernasconi P, Calatroni S, Boni M, Lazzarino M (2005) Outcome of four patients with chronic myeloid leukemia after imatinib mesylate discontinuation. Haematologica 90:979–981PubMedGoogle Scholar
  103. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature 435:1267–1270PubMedCrossRefGoogle Scholar
  104. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD, Gilliland DG, Neel BG (2004) Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 101:3130–3135PubMedCrossRefGoogle Scholar
  105. Mow BM, Chandra J, Svingen PA, Hallgren CG, Weisberg E, Kottke TJ, Narayanan VL, Litzow MR, Griffin JD, Sausville EA, Tefferi A, Kaufmann SH (2002) Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 99:664–671PubMedCrossRefGoogle Scholar
  106. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62:4236–4243PubMedGoogle Scholar
  107. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871PubMedCrossRefGoogle Scholar
  108. Nimmanapalli R, Bali P, O’Bryan E, Fuino L, Guo F, Wu J, Houghton P, Bhalla K (2003a) Arsenic trioxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Res 63:7950–7958PubMedGoogle Scholar
  109. Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K (2003b) Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or-refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 63:5126–5135PubMedGoogle Scholar
  110. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic phase chronic myeloid leukemia. N Engl J Med 348: 994–1004PubMedCrossRefGoogle Scholar
  111. O’Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM, Rivera VM, Tang H, Metcalf III CA, Bohacek RS, Wang Y, Sundaramoorthi R, Shakespeare WC, Dalgarno D, Clackson T, Sawyer TK, Deininger MW, Druker BJ (2004a) Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: Implications for CML. Blood 104:2532–2539PubMedCrossRefGoogle Scholar
  112. O’Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM, Rivera VM, Tang H, Metcalf CA, III, Bohacek RS, Wang Y, Sundaramoorthi R, Shakespeare WC, Dalgarno D, Clackson T, Sawyer TK, Deininger MW, Druker BJ (2004b) Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CML. Blood 104:2532–2539PubMedCrossRefGoogle Scholar
  113. O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MW, Druker BJ (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65:4500–4505PubMedCrossRefGoogle Scholar
  114. Okabe M, Uehara Y, Miyagishima T, Itaya T, Tanaka M, Kuni Eda Y, Kurosawa M, Miyazaki T (1992) Effect of herbimycin A, an antagonist of tyrosine kinase, on bcr/abl oncoprotein-associated cell proliferations: abrogative effect on the transformation of murine hematopoietic cells by transfection of a retroviral vector expressing oncoprotein P210bcr/abl and preferential inhibition on Ph1-positive leukemia cell growth. Blood 80:1330–1338PubMedGoogle Scholar
  115. Okuda K, Weisberg E, Gilliland DG, Griffin JD (2001) ARG tyrosine kinase activity is inhibited by STI571. Blood 97:2440–2448PubMedCrossRefGoogle Scholar
  116. Parmar S, Katsoulidis E, Verma A, Li Y, Sassano A, Lal L, Majchrzak B, Ravandi F, Tallman MS, Fish EN, Platanias LC (2004) Role of the p38 mitogen-activated protein kinase pathway in the generation of the effects of imatinib mesylate (STI571) in BCR-ABL-expressing cells. J Biol Chem 279:25345–25352PubMedCrossRefGoogle Scholar
  117. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D (1998) Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92:3780–3792PubMedGoogle Scholar
  118. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J et al (1993) BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185PubMedGoogle Scholar
  119. Peng B, Hayes M, Resta D, Racine-Poon A, Druker BJ, Talpaz M, Sawyers CL, Rosamilia M, Ford J, Lloyd P, Capdeville R (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942PubMedCrossRefGoogle Scholar
  120. Peters DG, Hoover RR, Gerlach MJ, Koh EY, Zhang H, Choe K, Kirschmeier P, Bishop WR, Daley GQ (2001) Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 97: 1404–1412PubMedCrossRefGoogle Scholar
  121. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10:1187–1189PubMedCrossRefGoogle Scholar
  122. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T (1994) Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 13:764–773PubMedGoogle Scholar
  123. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL (1995) The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 92:11746–11750PubMedCrossRefGoogle Scholar
  124. Ramaraj P, Singh H, Niu N, Chu S, Holtz M, Yee JK, Bhatia R (2004) Effect of mutational inactivation of tyrosine kinase activity on BCR/ABLinduced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res 64:5322–5331PubMedCrossRefGoogle Scholar
  125. Ricci C, Scappini B, Divoky V, Gatto S, Onida F, Verstovsek S, Kantarjian HM, Beran M (2002) Mutation in the ATP-binding pocket of the ABL kinase domain in an STI571-resistant BCR/ABL-positive cell line. Cancer Res 62:5995–5998PubMedGoogle Scholar
  126. Rousselot P, Huguet F, Cayuela JM, Maarek O, Marit G, Gluckman E, Reiffers J, Mahon FX (2005) Imatinib mesylate discontinuation in patients with chronic myelogenous leukaemia in complete colecular remission for more than two tears. Blood 106:321aGoogle Scholar
  127. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG (2002) Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1:479–492PubMedCrossRefGoogle Scholar
  128. Sausville EA, Zaharevitz D, Gussio R, Meijer L, Louarn-Leost M, Kunick C, Schultz R, Lahusen T, Headlee D, Stinson S, Arbuck SG, Senderowicz A (1999) Cyclin-dependent kinases: initial approaches to exploit a novel therapeutic target. Pharmacol Ther 82:285–292PubMedCrossRefGoogle Scholar
  129. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O’Brien SG, Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539PubMedCrossRefGoogle Scholar
  130. Sawyers CL, Kantarjian H, Shah N, Cortes J, Paquette R, Donato NJ, Nicoll J, Bleickard E, Chen T, Talpaz M (2005) Dasatinib (BMS-354825) in patients with chronic myeloid leukemia (CML) and Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ALL) who are resistant or intolerant to imatinib: update of a phase I study. Blood 106:16aGoogle Scholar
  131. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942PubMedCrossRefGoogle Scholar
  132. Schoch C, Haferlach T, Kern W, Schnittger S, Berger U, Hehlmann R, Hiddemann W, Hochhaus A (2003) Occurrence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia 17:461–463PubMedCrossRefGoogle Scholar
  133. Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD, Rothammer K, Roussel MF, Ihle JN (2000) Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl-and bcr/abl-induced transformation are independent of stat5. Blood 96:2277–2283PubMedGoogle Scholar
  134. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125PubMedCrossRefGoogle Scholar
  135. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401PubMedCrossRefGoogle Scholar
  136. Skorski T, Kanakaraj P, Nieborowska Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736PubMedGoogle Scholar
  137. Smith KM, Yacobi R, Van Etten RA (2003) Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell 12:27–37PubMedCrossRefGoogle Scholar
  138. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Deininger MW, Lennard AL, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone R, Tura S, Mahon FX, Fernandes-Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937PubMedCrossRefGoogle Scholar
  139. Talpaz M, Rousselot P, Kim D-W, Guilhot F, Corm S, Bleickard E, Zink R, Rosti G, Coutre S, Sawyers C (2006) A phase II study of dasatinib in patients with chronic myeloid leukemia (CML) in myeloid blast crisis who are resistant or intolerant to imatinib: first results of the CA180006’ sTART-B’ study. Blood 106:16aGoogle Scholar
  140. Tauchi T, Boswell HS, Leibowitz D, Broxmeyer HE (1994) Coupling between p210bcr-abl and Shc and Grb2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to ras activation pathway. J Exp Med 179:167–175PubMedCrossRefGoogle Scholar
  141. Tauchi T, Sumi M, Nakajima A, Sashida G, Shimamoto T, Ohyashiki K (2003) BCL-2 antisense oligonucleotide genasense is active against imatinib-resistant BCR-ABL-positive cells. Clin Cancer Res 9:4267–4273PubMedGoogle Scholar
  142. Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745PubMedCrossRefGoogle Scholar
  143. Tipping AJ, Deininger MW, Goldman JM, Melo JV (2003) Comparative gene expression profile of chronic myeloid leukemia cells innately resistant to imatinib mesylate. Exp Hematol 31:1073–1080PubMedGoogle Scholar
  144. Tseng PH, Lin HP, Zhu J, Chen KF, Hade EM, Young DC, Byrd JC, Grever M, Johnson K, Druker BJ, Chen CS (2005) Synergistic interactions between imatinib mesylate and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming imatinib mesylate resistance. Blood 105:4021–4027PubMedCrossRefGoogle Scholar
  145. van Oosterom AT, Judson I, Verweij J, Stroobants S, Donato dP, Dimitrijevic S, Martens M, Webb A, Sciot R, Van Glabbeke M, Silberman S, Nielsen OS (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358:1421–1423PubMedCrossRefGoogle Scholar
  146. Vigneri P, Wang JY (2001) Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7:228–234PubMedCrossRefGoogle Scholar
  147. von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491CrossRefGoogle Scholar
  148. von Bubnoff N, Veach DR, Miller WT, Li W, Sanger J, Peschel C, Bornmann WG, Clarkson B, Duyster J (2003) Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors. Cancer Res 63:6395–6404Google Scholar
  149. von Bubnoff N, Veach DR, van der K H, Aulitzky WE, Sanger J, Seipel P, Bornmann WG, Peschel C, Clarkson B, Duyster J (2005) A cell-based screen for resistance of Bcr-Abl-positive leukemia identifies the mutation pattern for PD166326, an alternative Abl kinase inhibitor. Blood 105:1652–1659CrossRefGoogle Scholar
  150. Warmuth M, Simon N, Mitina O, Mathes R, Fabbro D, Manley PW, Buchdunger E, Forster K, Moarefi I, Hallek M (2003) Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood 101:664–672PubMedCrossRefGoogle Scholar
  151. Weisberg E, Griffin JD (2000) Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95:3498–3505PubMedGoogle Scholar
  152. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141PubMedCrossRefGoogle Scholar
  153. Wen ST, van Etten RA (1997) The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev 11:2456–2467PubMedGoogle Scholar
  154. Widmer N, Colombo S, Buclin T, Decosterd LA (2003) Functional consequence of MDR1 expression on imatinib intracellular concentrations. Blood 102:1142PubMedCrossRefGoogle Scholar
  155. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedCrossRefGoogle Scholar
  156. Wisniewski D, Lambek CL, Liu C, Strife A, Veach DR, Nagar B, Young MA, Schindler T, Bornmann WG, Bertino JR, Kuriyan J, Clarkson B (2002) Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res 62:4244–4255PubMedGoogle Scholar
  157. Wolff NC, Ilaria RL Jr (2001) Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98:2808–2816PubMedCrossRefGoogle Scholar
  158. Yu C, Krystal G, Dent P, Grant S (2002a) Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res 8:2976–2984PubMedGoogle Scholar
  159. Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P, Grant S (2002b) Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 62:188–199PubMedGoogle Scholar
  160. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628PubMedCrossRefGoogle Scholar
  161. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS (2002) Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol 9:117–120PubMedGoogle Scholar
  162. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB, Taxler P (1996) Phenylamino-Pyrimidine (PAP)-derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett 6:1221–1226CrossRefGoogle Scholar
  163. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB (1997) Potent and selective inhibitors of the Abl kinase Phenylaminopyrimidine (PAP) derivatives. Bioorg Med Chem Lett 7:187–192CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Michael W. N. Deininger
    • 1
  1. 1.Center for Hematologic MalignanciesOregon Health & Science UniversityPortlandUSA

Personalised recommendations