Skip to main content

Chronic Myeloid Leukemia: Biology of Advanced Phase

  • Chapter
Myeloproliferative Disorders

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Chronic myeloid leukemia (CML) usually starts with an indolent chronic phase characterized by the overproduction of mature granulocytes, but inevitably evolves to a terminal blastic phase in which excessive numbers of undifferentiated blasts are produced. The molecular mechanisms underlying disease progression are still very poorly understood. Whereas the BCR-ABL oncogene has a central role in disease etiology, it is not sufficient by itself to precipitate the transition to blast crisis. Other secondary genetic events are presumed to be essential for this process but the number required for blastic transformation is still unknown. Although various genetic abnormalities have been identified in blast crisis samples, the significance of these for disease progression is far from certain. Candidate genes, suggested by their induced cellular phenotype, have been investigated, usually in in vitro models of CML. Several of these genes have also proven to have abnormal expression or activity in small numbers of CML blast crisis samples. At the cytogenetic level, disease progression in CML is often accompanied by the appearance of nonrandom chromosomal abnormalities. These are the microscopically visible manifestations of an underlying genomic instability and increased tolerance of genetic aberrations. Here we summarize the current state of knowledge concerning the biology of advanced phase CML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hubscher U, Egly JM, Wood RD (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868

    Article  PubMed  CAS  Google Scholar 

  • Ahuja H, Bar-Eli M, Advani SH, Benchimol S, Cline MJ (1989) Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci USA 86: 6783–6787

    Article  PubMed  CAS  Google Scholar 

  • Ahuja HG, Jat PS, Foti A, Bar Eli M, Cline MJ (1991) Abnormalities of the retinoblastoma gene in the pathogenesis of acute leukemia. Blood 78:3259–3268

    PubMed  CAS  Google Scholar 

  • Alimena G, De Cuia MR, Diverio D, Gastaldi R, Nanni M (1987) The karyotype of blastic crisis. Cancer Genetics and Cytogenetics 26:39–50

    Article  PubMed  CAS  Google Scholar 

  • Amarante MG, Naekyung KC, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K (1998) Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91:1700–1705

    Google Scholar 

  • Amos TA, Lewis JL, Grand FH, Gooding RP, Goldman JM, Gordon MY (1995) Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br J Haematol 91:387–393

    PubMed  CAS  Google Scholar 

  • Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A, Pattacini L, Goldman JM, Melo JV (2005a) Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 65:8912–8919

    Article  PubMed  CAS  Google Scholar 

  • Barnes DJ, Schultheis B, Adedeji S, Melo JV (2005b) Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene 24:6432–6440

    PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  • Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts vK, Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M et al (1983) Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306:277–280

    Article  PubMed  CAS  Google Scholar 

  • Beck Z, Kiss A, Toth FD, Szabo J, Bacsi A, Balogh E, Borbely A, Telek B, Kovacs E, Olah E, Rak K (2000) Alterations of P53 and RB genes and the evolution of the accelerated phase of chronic myeloid leukemia. Leuk Lymphoma 38:587–597

    PubMed  CAS  Google Scholar 

  • Bedi A, Barber JP, Bedi GC, el Deiry WS, Sidransky D, Vala MS, Akhtar AJ, Hilton J, Jones RJ (1995) BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86:1148–1158

    PubMed  CAS  Google Scholar 

  • Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ (1994) Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83:2038–2044

    PubMed  CAS  Google Scholar 

  • Ben Neriah Y, Bernards A, Paskind M, Daley GQ, Baltimore D (1986) Alternative 5′ exons in c-abl mRNA. Cell 44:577–586

    Article  PubMed  CAS  Google Scholar 

  • Bi S, Lanza F, Goldman JM (1993) The abnormal p53 proteins expressed in CML cell lines are non-functional. Leukemia 7:1840–1845

    PubMed  CAS  Google Scholar 

  • Bi S, Lanza F, Goldman JM (1994a) The involvement of “tumor suppressor” p53 in normal and chronic myelogenous leukemia hemopoiesis. Cancer Res 54:582–586

    PubMed  CAS  Google Scholar 

  • Bi S, Hughes T, Bungey J, Chase A, De Fabritiis P, Goldman JM (1992) p53 in chronic myeloid leukemia cell lines. Leukemia 6:839–842

    PubMed  CAS  Google Scholar 

  • Bi S, Barton CM, Lemoine NR, Cross NC, Goldman JM (1994b) Retroviral transduction of Philadelphia-positive chronic myeloid leukemia cells with a human mutant p53 cDNA and its effect on in vitro proliferation [see comments]. Exp Hematol 22:95–99

    PubMed  CAS  Google Scholar 

  • Blangy A, Lane HA, d’Herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Blick M, Romero P, Talpaz M, Kurzrock R, Shtalrid M, Andersson B, Trujillo J, Beran M, Gutterman J (1987) Molecular characteristics of chronic myelogenous leukemia in blast crisis. Cancer Genet Cytogenet 27:349–356

    Article  PubMed  CAS  Google Scholar 

  • Bose S, Goldman JM, Melo JV (1999) Mutations of the BCL10 gene are not associated with the blast crisis of chronic myeloid leukaemia. Leukemia 13:1894–1896

    Article  PubMed  CAS  Google Scholar 

  • Brady N, Gaymes TJ, Cheung M, Mufti GJ, Rassool FV (2003) Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 63:1798–1805

    PubMed  CAS  Google Scholar 

  • Calabretta B, Perrotti D (2004) The biology of CML blast crisis. Blood 103:4010–4022

    Article  PubMed  CAS  Google Scholar 

  • Cambier N, Chopra R, Strasser A, Metcalf D, Elefanty AG (1998) BCR-ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner. Oncogene 16:335–348

    Article  PubMed  CAS  Google Scholar 

  • Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmed A, Turhan AG, Salles B, Cazaux C, Hoffmann JS (1999) Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene 18:2676–2680

    Article  PubMed  CAS  Google Scholar 

  • Canitrot Y, Falinski R, Louat T, Laurent G, Cazaux C, Hoffmann JS, Lautier D, Skorski T (2003) p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 102: 2632–2637

    Article  PubMed  CAS  Google Scholar 

  • Carapeti M, Goldman JM, Cross NC (1997a) Dominant-negative mutations of the Wilms’ tumour predisposing gene (WT1) are infrequent in CML blast crisis and de novo acute leukaemia. Eur J Haematol 58:346–349

    Article  PubMed  CAS  Google Scholar 

  • Carapeti M, Soede-Bobok A, Hochhaus A, Sill H, Touw IP, Goldman JM, Cross NC (1997b) Rarity of dominant-negative mutations of the G-CSF receptor in patients with blast crisis of chronic myeloid leukemia or de novo acute leukemia. Leukemia 11:1005–1008

    Article  PubMed  CAS  Google Scholar 

  • Carapeti M, Aguiar RC, Sill H, Goldman JM, Cross NC (1998) Aberrant transcripts of the FHIT gene are expressed in normal and leukaemic haemopoietic cells. Br J Cancer 78:601–605

    PubMed  CAS  Google Scholar 

  • Carpino N, Wisniewski D, Strife A, Marshak D, Kobayashi R, Stillman B, Clarkson B (1997) p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88:197–204

    Article  PubMed  CAS  Google Scholar 

  • Carter BZ, Mak D, Shi YX, Schober WD, Wang RY, McQueen T, Konopleva M, Koller E, Dean NM, Andreeff M (2005) Regulation and targeting of Eg5 in blast crisis CML: Overcoming imatinib resistance. Blood 106:806A

    Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    Article  PubMed  CAS  Google Scholar 

  • Cong F, Yuan B, Goff SP (1999) Characterization of a novel member of the DOK family that binds and modulates Abl signaling. Mol Cell Biol 19:8314–8325

    PubMed  CAS  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J (2003) An ATR-and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 11: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Daley GQ, Baltimore D (1988) Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 85: 9312–9316

    Article  PubMed  CAS  Google Scholar 

  • Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    Article  PubMed  CAS  Google Scholar 

  • Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K, Li S, Van Etten RA, Borrow J, Housman D, Druker B, Gilliland DG (2002) A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 99:7622–7627

    Article  PubMed  CAS  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Devel 13:768–785

    PubMed  Google Scholar 

  • Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    PubMed  CAS  Google Scholar 

  • Deutsch E, Dugray A, AbdulKarim B, Marangoni E, Maggiorella L, Vaganay S, M’Kacher R, Rasy SD, Eschwege F, Vainchenker W, Turhan AG, Bourhis J (2001) BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97:2084–2090

    Article  PubMed  CAS  Google Scholar 

  • Deutsch E, Jarrousse S, Buet D, Dugray A, Bonnet ML, Vozenin-Brotons MC, Guilhot F, Turhan AG, Feunteun J, Bourhis J (2003) Down-regulation of BRCA-1 in BCR-ABL-expressing hematopoietic cells. Blood 101:4583–4588

    Article  PubMed  CAS  Google Scholar 

  • Di Cristofano A, Carpino N, Dunant N, Friedland G, Kobayashi R, Strife A, Wisniewski D, Clarkson B, Pandolfi PP, Resh MD (1998) Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins. J Biol Chem 273:4827–4830

    Article  PubMed  Google Scholar 

  • Dierov J, Dierova R, Carroll M (2004) BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 5:275–285

    Article  PubMed  CAS  Google Scholar 

  • Dierov JK, Schoppy DW, Carroll M (2005) CML progenitor cells have chromsomal instability and display increased DNA damage at DNA fragile sites. Blood 106:563A

    Google Scholar 

  • Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E (1998) BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 91:2415–2422

    PubMed  CAS  Google Scholar 

  • Elmaagacli AH, Beelen DW, Opalka B, Seeber S, Schaefer UW (2000) The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage. Ann Hematol 79:424–431

    Article  PubMed  CAS  Google Scholar 

  • Fabarius A, Giehl M, Frank O, Duesberg P, Hochhaus A, Hehlmann R, Seifarth W (2005) Induction of centrosome and chromosome aberrations by imatinib in vitro. Leukemia 19:1573–1578

    Article  PubMed  CAS  Google Scholar 

  • Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E (1991) p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA 88:6293–6297

    Article  PubMed  CAS  Google Scholar 

  • Fioretos T, Strombeck B, Sandberg T, Johansson B, Billstrom R, Borg A, Nilsson PG, Van den B H, Hagemeijer A, Mitelman F, Hoglund M (1999) Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood 94:225–232

    PubMed  CAS  Google Scholar 

  • Gaiger A, Henn T, Horth E, Geissler K, Mitterbauer G, Maier-Dobersberger T, Greinix H, Mannhalter C, Haas OA, Lechner K (1995) Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 86:2371–2378

    PubMed  CAS  Google Scholar 

  • Garicochea B, Giorgi R, Odone VF, Dorlhiac-Llacer PE, Bendit I (1998) Mutational analysis of N-RAS and GAP-related domain of the neurofibromatosis type 1 gene in chronic myelogenous leukemia. Leuk Res 22:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Gaymes TJ, Mufti GJ, Rassool FV (2002) Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res 62:2791–2797

    PubMed  CAS  Google Scholar 

  • Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R, Seifarth W (2005) Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 19:1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987) Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328:342–344

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72:131–142

    Article  PubMed  CAS  Google Scholar 

  • Grand FH, Koduru P, Cross NC, Allen SL (2005) NUP98-LEDGF fusion and t(9;11) in transformed chronic myeloid leukemia. Leuk Res 29:1469–1472

    Article  PubMed  CAS  Google Scholar 

  • Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495

    Article  PubMed  CAS  Google Scholar 

  • Gribble SM, Sinclair PB, Grace C, Green AR, Nacheva EP (1999) Comparative analysis of G-banding, chromosome painting, locus-specific fluorescence in situ hybridization, and comparative genomic hybridization in chronic myeloid leukemia blast crisis. Cancer Genet Cytogenet 111:7–17

    Article  PubMed  CAS  Google Scholar 

  • Gribble SM, Reid AG, Roberts I, Grace C, Green AR, Nacheva EP (2003) Genomic imbalances in CML blast crisis: 8q24.12–q24.13 segment identified as a common region of over-representation. Genes Chromosomes Cancer 37:346–358

    Article  PubMed  CAS  Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99

    Article  PubMed  CAS  Google Scholar 

  • Guo JQ, Wang JY, Arlinghaus RB (1991) Detection of BCR-ABL proteins in blood cells of benign phase chronic myelogenous leukemia patients. Cancer Res 51:3048–3051

    PubMed  CAS  Google Scholar 

  • Guran S, Bahce M, Beyan C, Korkmaz K, Yalcin A (1998) P53, p15INK4B, p16INK4A and p57KIP2 mutations during the progression of chronic myeloid leukemia. Haematologia (Budap) 29:181–193

    PubMed  CAS  Google Scholar 

  • Hernandez-Boluda JC, Cervantes F, Colomer D, Vela MC, Costa D, Paz MF, Esteller M, Montserrat E (2003) Genomic p16 abnormalities in the progression of chronic myeloid leukemia into blast crisis: a sequential study in 42 patients. Exp Hematol 31:204–210

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Ushijima T, Wakazono K, Oda H, Tanaka Y, Aizawa S, Ishikawa T, Yazaki Y, Hirai H (2000) Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML. Blood 95:1144–1150

    PubMed  CAS  Google Scholar 

  • Huntly BJ, Gilliland DG (2004) Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. Cancer Cell 6:199–201

    Article  PubMed  CAS  Google Scholar 

  • Huntly BJP, Shigematzu H, Deguchi K, Lee B, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, Akashi K, Gilliland G (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Blood 104:21a

    Google Scholar 

  • Issaad C, Ahmed M, Novault S, Bonnet ML, Bennardo T, Varet B, Vainchenker W, Turhan AG (2000) Biological effects induced by variable levels of BCR-ABL protein in the pluripotent hematopoietic cell line UT-7. Leukemia 14:662–670

    Article  PubMed  CAS  Google Scholar 

  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New Engl J Med 351:657–667

    Article  PubMed  CAS  Google Scholar 

  • Janssen JJ, Klaver SM, Waisfisz Q, Pasterkamp G, de Kleijn DP, Schuurhuis GJ, Ossenkoppele GJ (2005) Identification of genes potentially involved in disease transformation of CML. Leukemia 19:998–1004

    Article  PubMed  CAS  Google Scholar 

  • Jennings BA, Mills KI (1998) c-myc locus amplification and the acquisition of trisomy 8 in the evolution of chronic myeloid leukaemia. Leuk Res 22:899–903

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Fioretos T, Mitelman F (2002) Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107:76–94

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A, McCredie KB, Freireich EJ (1987) Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med 83:445–454

    Article  PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  • Klucher KM, Lopez DV, Daley GQ (1998) Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 91:3927–3934

    PubMed  CAS  Google Scholar 

  • Koptyra M, Houghtaling S, Grompe M, Skorski T (2005) Fanconi anemia D2 protein contributes to BCR/ABL-mediated transformation of hematopoietic cells. Blood 106:806A–807A

    Google Scholar 

  • Lemay S, Davidson D, Latour S, Veillette A (2000) Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Mol Cell Biol 20:2743–2754

    Article  PubMed  CAS  Google Scholar 

  • Lin F, van Rhee F, Goldman JM, Cross NC (1996) Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 87:4473–4478

    PubMed  CAS  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Devel 14:1448–1459

    PubMed  CAS  Google Scholar 

  • Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61:3230–3239

    PubMed  CAS  Google Scholar 

  • Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97:10389–10394

    Article  PubMed  CAS  Google Scholar 

  • McCarthy DM, Rassool FV, Goldman JM, Graham SV, Birnie GD (1984) Genomic alterations involving the c-myc proto-oncogene locus during the evolution of a case of chronic granulocytic leukaemia. Lancet 2:1362–1365

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin J, Chianese E, Witte ON (1987) In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 84:6558–6562

    Article  PubMed  CAS  Google Scholar 

  • Melo JV (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype [editorial]. Blood 88:2375–2384

    PubMed  CAS  Google Scholar 

  • Melo JV, Goldman JM (1992) Specific point mutations that activate vabl are not found in Philadelphia-negative chronic myeloid leukaemia, Philadelphia-negative acute lymphoblastic leukaemia or blast transformation of chronic myeloid leukaemia. Leukemia 6:786–790

    PubMed  CAS  Google Scholar 

  • Melo JV, Gordon DE, Cross NC, Goldman JM (1993) The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81:158–165

    PubMed  CAS  Google Scholar 

  • Melo JV, Kumberova A, van Dijk AG, Goldman JM, Yuille MR (2001) Investigation on the role of the ATM gene in chronic myeloid leukaemia. Leukemia 15:1448–1450

    Article  PubMed  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  • Mitani K (2004) Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 23:4263–4269

    Article  PubMed  CAS  Google Scholar 

  • Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H (1994) Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 13:504–510

    PubMed  CAS  Google Scholar 

  • Mitelman F, Levan G, Nilsson PG, Brandt L (1976) Non-random karyotypic evolution in chronic myeloid leukemia. Int J Cancer 18:24–30

    Article  PubMed  CAS  Google Scholar 

  • Nagy E, Beck Z, Kiss A, Csoma E, Telek B, Konya J, Olah E, Rak K, Toth FD (2003) Frequent methylation of p16INK4A and p14ARF genes implicated in the evolution of chronic myeloid leukaemia from its chronic to accelerated phase. Eur J Cancer 39:2298–2305

    Article  PubMed  CAS  Google Scholar 

  • Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A, Roy DC, Valtieri M, Bruner-Klisovic R, Caligiuri MA, Bloomfield CD, Marcucci G, Perrotti D (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368

    Article  PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Snowden CM, McCarville J, Ramsden DA (2000) Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20:2996–3003

    Article  PubMed  CAS  Google Scholar 

  • Nieborowska M, Stoklosa T, Datta M, Czechowska A, Rink L, Blasiak J, Skorski T (2005) ATR-Chk1 axis is activated, but the function of Chk1 is disrupted in BCR/ABL leukemia cells responding to DNA damage. Blood 106:808A

    Google Scholar 

  • Niki M, Di Cristofano A, Zhao M, Honda H, Hirai H, Van Aelst L, Cordon-Cardo C, Pandolfi PP (2004) Role of Dok-1 and Dok-2 in leukemia suppression. J Exp Med 200:1689–1695

    Article  PubMed  CAS  Google Scholar 

  • Notari M, Neviani P, Santhanam R, Bradley BW, Chang JS, Galietta A, Willis AE, Roy DC, Caligiuri MA, Marcucci G, Perrotti D (2005) A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood (in press)

    Google Scholar 

  • Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497

    Google Scholar 

  • Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T, Skorski T (2003) Chronic myelogenous leukemia molecular signature. Oncogene 22:3952–3963

    Article  PubMed  CAS  Google Scholar 

  • Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104:3746–3753

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Mitani K, Kurokawa M, Matsuo Y, Minowada J, Inazawa J, Kamada N, Tsubota T, Yazaki Y, Hirai H (1996) Abnormal expression of Evi-1 gene in human leukemias. Hum Cell 9:323–332

    PubMed  CAS  Google Scholar 

  • Ohmine K, Ota J, Ueda M, Ueno S, Yoshida K, Yamashita Y, Kirito K, Imagawa S, Nakamura Y, Saito K, Akutsu M, Mitani K, Kano Y, Komatsu N, Ozawa K, Mano H (2001) Characterization of stage progression in chronic myeloid leukemia by DNA microarray with purified hematopoietic stem cells. Oncogene 20:8249–8257

    Article  PubMed  CAS  Google Scholar 

  • Pabst T, Mueller BU, Stillner E, Nimer S, Gilliland G, Melo JV, Tenen DG (2006) Mutations of the myeloid transcription factor CEBPA are not associated with the blast crisis of chronic myeloid leukemia. Br J Haematol (in press)

    Google Scholar 

  • Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, Iervolino A, Condorelli F, Gambacorti-Passerini C, Caligiuri MA, Calabretta B (2002) BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 30:48–58

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723

    Article  PubMed  CAS  Google Scholar 

  • Rink L, Stoklosa T, Skorski T (2005) Enhanced phosphorylation of Nbs1, a member of the DNA repair/checkpoint activation complex Rad50/Mre11/Nbs1, prolongs cell cycle S phase and contributes to drug resistance in BCR/ABL-positive leukemias. Blood 106:804A

    Google Scholar 

  • Rooke HM, Vitas MR, Crosier PS, Crosier KE (1999) The TGF-beta type II receptor in chronic myeloid leukemia: analysis of microsatellite regions and gene expression. Leukemia 13:535–541

    Article  PubMed  CAS  Google Scholar 

  • Rowley JD (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501

    Article  PubMed  CAS  Google Scholar 

  • Savage DG, Szydlo RM, Goldman JM (1997) Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 96:111–116

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O’Brien SG, Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  PubMed  CAS  Google Scholar 

  • Scanlon KJ, Kashani-Sabet M, Miyachi H (1989) Differential gene expression in human cancer cells resistant to cisplatin. Cancer Invest 7:581–587

    PubMed  CAS  Google Scholar 

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    Article  PubMed  CAS  Google Scholar 

  • Serra A, Gottardi E, Della RF, Saglio G, Iolascon A (1995) Involvement of the cyclin-dependent kinase-4 inhibitor (CDKN2) gene in the pathogenesis of lymphoid blast crisis of chronic myelogenous leukaemia. Br J Haematol 91:625–629

    PubMed  CAS  Google Scholar 

  • Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cellcycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  • Sharpless NE, DePinho RA (1999) The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9:22–30

    Article  PubMed  CAS  Google Scholar 

  • Shet AS, Jahagirdar BN, Verfaillie CM (2002) Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 16:1402–1411

    Article  PubMed  CAS  Google Scholar 

  • Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554

    Article  PubMed  CAS  Google Scholar 

  • Sill H, Goldman JM, Cross NC (1995) Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 85:2013–2016

    PubMed  CAS  Google Scholar 

  • Silva PM, Lourenco GJ, Bognone RA, Delamain MT, Pinto-Junior W, Lima CS (2005) Inherited pericentric inversion of chromosome 16 in chronic phase of chronic myeloid leukaemia. Leuk Res (in press)

    Google Scholar 

  • Skorski T, Nieborowska-Skorska M, Wlodarski P, Perrotti D, Martinez R, Wasik MA, Calabretta B (1996) Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci USA 93:13137–13142

    Article  PubMed  CAS  Google Scholar 

  • Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G, Nowicki MO, Pierce AJ, Fishel R, Skorski T (2001) BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell 8:795–806

    Article  PubMed  CAS  Google Scholar 

  • Slupianek A, Jozwiakowski S, Gurdek E, Nowicki MO, Skorski T (2005a) BCR/ABL regulates the expression and interacts with Werner syndrome helicase/exonuclease to modulate its biochemical properties. Blood 106:805A

    Google Scholar 

  • Slupianek A, Nowicki MO, Skorski T (2005b) BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in leukemia cells. Blood 106:561A

    Google Scholar 

  • Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88:1234–1247

    PubMed  CAS  Google Scholar 

  • Stoklosa T, Slupianek A, Basak G, Skorski T (2005) BCR/ABL kinase disrupts formation of mismatch repair complex to induce genomic instability. Blood 106:803A

    Article  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014

    Article  PubMed  CAS  Google Scholar 

  • Suwa A, Hirakata M, Takeda Y, Jesch SA, Mimori T, Hardin JA (1994) DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc Natl Acad Sci USA 91:6904–6908

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Shibuya M, Maru Y (1999) The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci USA 96: 203–207

    Article  PubMed  CAS  Google Scholar 

  • Towatari M, Adachi K, Kato H, Saito H (1991) Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. Blood 78:2178–2181

    PubMed  CAS  Google Scholar 

  • Van Etten RA, Jackson P, Baltimore D (1989) The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 58:669–678

    Article  PubMed  Google Scholar 

  • Vardiman JW, Pierre R, Thiele J, Imbert J, Brunning RD, Flandrin G (2001) Chronic myelogenous leukaemia. In: Jaffe ES et al (eds) World Health Organization Classification of Tumours: Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon pp 20–26

    Google Scholar 

  • Vigneri P, Wang JY (2001) Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7:228–234

    Article  PubMed  CAS  Google Scholar 

  • Virtaneva K, Wright FA, Tanner SM, Yuan B, Lemon WJ, Caligiuri MA, Bloomfield CD, de La CA, Krahe R (2001) Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc Natl Acad Sci USA 98:1124–1129

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa J, Szydlo RM, Apperley JF, Chase A, Bua M, Marin D, Olavarria E, Kanfer E, Goldman JM (2002) Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood 99:2304–2309

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Lin D, Zhang X, Chen S, Wang M, Wang J (2005) Analysis of FLT3 internal tandem duplication and D835 mutations in Chinese acute leukemia patients. Leuk Res 29: 1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Devel 14:927–939

    PubMed  CAS  Google Scholar 

  • Watzinger F, Gaiger A, Karlic H, Becher R, Pillwein K, Lion T (1994) Absence of N-ras mutations in myeloid and lymphoid blast crisis of chronic myeloid leukemia. Cancer Res 54:3934–3938

    PubMed  CAS  Google Scholar 

  • Wetzler M, Talpaz M, Estrov Z, Kurzrock R (1993) CML: mechanisms of disease initiation and progression. Leuk Lymphoma 11,Suppl 1: 47–50

    Article  PubMed  Google Scholar 

  • Yamamoto K, Nakamura Y, Saito K, Furusawa S (2000) Expression of the NUP98/HOXA9 fusion transcript in the blast crisis of Philadelphia chromosome-positive chronic myelogenous leukaemia with t(7;11)(p15;p15). Br J Haematol 109:423–426

    Article  PubMed  CAS  Google Scholar 

  • Yamanashi Y, Baltimore D (1997) Identification of the Abl-and rasGAP-associated 62 kDa protein as a docking protein, Dok. Cell 88:205–211

    Article  PubMed  CAS  Google Scholar 

  • Yang MY, Liu TC, Chang JG, Lin PM, Lin SF (2003) JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood 101:3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30:285–289

    Article  PubMed  Google Scholar 

  • Yong AS, Szydlo RM, Goldman JM, Apperley JF, Melo JV (2005) Molecular profiling of CD34+ cells identifies low expression of CD7 with high expression of proteinase 3 or elastase as predictors of longer survival in CML patients. Blood (in press)

    Google Scholar 

  • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 94:569–574

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH (1999) Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285:747–750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Melo, J.V., Barnes, D.J. (2007). Chronic Myeloid Leukemia: Biology of Advanced Phase. In: Myeloproliferative Disorders. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34506-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34506-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34505-3

  • Online ISBN: 978-3-540-34506-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics