Advertisement

Chronic Myeloid Leukemia — A Brief History

  • John M. Goldman
  • George Q. Daley
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Leukemia was first recognized as a distinct nosological entity in the early part of the 19th century and some of the early descriptions are highly suggestive of chronic myeloid leukemia (CML). The first important contribution to understanding the biological basis of CML was the discovery of the Philadelphia (Ph) chromosome in 1960. Almost equally important was the demonstration in 1973 that it resulted from a reciprocal translocation involving chromosomes 9 and 22. In the 1980s a “breakpoint cluster region” of the Ph chromosome was defined and this led fairly rapidly to the recognition that patients with CML had in their leukemia cells an acquired BCR-ABL fusion gene that was expressed as a protein with greatly enhanced tyrosine kinase activity. In 1990 BCR-ABL was shown to induce CML in murine models, thereby proving its central role in disease causation. Treatment for CML in the 19th century was rudimentary. The only agent known to be effective was arsenic. Radiotherapy and subsequently alkylating agents and hydroxyurea became the mainstay of therapy from the beginning of the 20th century until the advent of interferon-alfa in the early 1980s. During the 1980s it also became clear that allogeneic stem cell transplantation, though not without risk of mortality, could result in long-term disease-free survival and probably cure for selected patients. The introduction to the clinic of the original tyrosine kinase inhibitor (STI571, now imatinib) in 1998 has revolutionized approaches to the management of the newly diagnosed patient with CML in chronic phase.

Keywords

Chronic Myeloid Leukemia Chronic Phase Chronic Myelogenous Leukemia Chronic Myeloid Leukemia Patient Breakpoint Cluster Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson HT, Rabstein LS (1970) Lymphosarcoma: virus induced thymic-independent disease in mice. Cancer Res 30:2213–2222PubMedGoogle Scholar
  2. Allan NC, Richards SM, Shepherd PCA et al (1995) Medical Research Council randomised multicentre trial of interferon-a1 for chronic myeloid leukaemia: Improved survival irrespective of cytogenetic response. Lancet 345:1392–1397PubMedCrossRefGoogle Scholar
  3. Anafi M, Gazit A, Gilon C, Ben Neriah Y, Levitzki A (1992) Selective interactions of transforming and normal Abl proteins with ATP, tyrosine copolymer substrates, and tyrphostins. J Biol Chem 267:4518–4523PubMedGoogle Scholar
  4. Apperley JF, Jones L, Hale G, Waldmann H, Hows JM, Rombos Y, Tsatalas C, Goolden AWG, Gordon Smith EC, Catovsky D, Galton DAG, Goldman JM (1986) Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion reduces the incidence of graft-versus-host disease but increases the risk of leukaemic relapse. Bone Marrow Transplant 1:53–66PubMedGoogle Scholar
  5. Baccarani M, Rosti G, de Vivo A et al (2002) A randomized study of interferon-a versus interferon-a plus low dose arabinosyl cytosine in chronic myeloid leukemia. Blood 94:1527–1535CrossRefGoogle Scholar
  6. Baikie AG, Court-Brown WM, Buckton KE et al (1960) A possible specific chromosome abnormality in human chronic myeloid leukaemia. Nature 188:1165–1166PubMedCrossRefGoogle Scholar
  7. Barnett MJ, Eaves CJ, Phillips GL, Gascoigne RD, Hogge DE, Horseman DE, Humphries RK, Klingeman HG, Lansdorp PM, Nantel SH, Reece DE, Shepherd JD, Spinelli JJ, Sutherland HJ, Eaves AC (1994) Autografting with cultured marrow in chronic myeloid leukemia: Results of a pilot study. Blood 84:724–732PubMedGoogle Scholar
  8. Barrett AJ (2003) Allogeneic stem cell transplantation for chronic myeloid leukemia. Semin Hematol 40:59–71PubMedCrossRefGoogle Scholar
  9. Bennett JH (1845) Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinb Med Surg J 64:413–423Google Scholar
  10. Ben-Neriah Y, Daley GQ, Mes-Masson A-M, Witte ON, Baltimore D (1986) The chronic myelogenous leukemia specific p210 protein is the product of the bcr/abl hybrid gene. Science 223:212–214CrossRefGoogle Scholar
  11. Beran M, Cao X, Estrov Z et al (1998) Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190 000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin Cancer Res 4:1661–1672PubMedGoogle Scholar
  12. Bernards A, Rubin CM, Westbrook CA, Paskind M, Baltimore D (1987) The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukemia. Mol Cell Biol 7:3231–3236PubMedGoogle Scholar
  13. Bonifazi F, de Vivo A, Rosti G et al (2001) Chronic myeloid leukemia and interferon-a: A study of complete cytogenetic responders. Blood 98:3074–3081PubMedCrossRefGoogle Scholar
  14. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Verlag von Gustav Fischer, Jena, GermanyGoogle Scholar
  15. Buckner CD, Graw RG, Eisel RJ, Henderson ES, Perry S(1969) Leukapheresis by continuous flow centrifugation (CFC) in patients with chronic myelocytic leukemia (CML) Blood 33:353–369PubMedGoogle Scholar
  16. Buckner CD, Stewart P, Clift RA, Fefer A, Neiman PE, Singer J, Storb R, Thomas ED (1978) Treatment of blastic transformation of chronic granulocytic leukemia by chemotherapy, total body irradiation and infusion of cryopreserved autologous marrow. Exp Hematol 6:96–109PubMedGoogle Scholar
  17. Canaani E, Steiner-Saltz D, Aghai E, Gale RP, Berrebi A, Januszewicz E (1984) Altered transcription of an oncogene in chronic myeloid leukemia. Lancet 1:593–595PubMedCrossRefGoogle Scholar
  18. Carella AM, Pollicardo N, Pungolino E, Raffo MR Podesta M, Ferrero R, Pierluigi D, Nati S. Congui A (1993) Mobilization of cytogenetically normal blood progenitors by intensive chemotherapy for chronic myeloid and acute lymphoblastic leukemia. Leuk Lymphoma 9:477–483PubMedGoogle Scholar
  19. Carella AM, Lerma E, Corsetti MT et al (1999) Autografting with Philadelphia chromosome negative mobilized hematopoietic progenitor cells in chronic myelogenous leukemia. Blood; 83:1534–1539Google Scholar
  20. Champlin RE, Ho W, Arenson E, Gale RP (1982) Allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic or accelerated phase. Blood 60:1038–1041PubMedGoogle Scholar
  21. Clift RA, Buckner CD, Thomas ED et al (1982) Treatment of chronic granulocytic leukemia in chronic phase by allogeneic marrow transplantation. Lancet 2:621–623PubMedCrossRefGoogle Scholar
  22. Cowan Doyle A (1882) Notes on a case of leucocythaemia. Lancet 25 March, 490Google Scholar
  23. Craigie D (1845) Case of disease of the spleen in which death took place consequent on the presence of purulent matter in the blood. Edinb Med Surg J 64:400–413Google Scholar
  24. Daley GQ, van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210 BCR/ABL gene of the Philadelphia chromosome. Science 247:824–830PubMedCrossRefGoogle Scholar
  25. Dameshek W (1951) Some speculations on the myeloproliferative syndromes. [Editorial] Blood 6:372–375PubMedGoogle Scholar
  26. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653PubMedCrossRefGoogle Scholar
  27. Deininger M, Goldman JM, Lydon NB, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL positive cells. Blood 90:3691–3698PubMedGoogle Scholar
  28. de Klein A, van Kessel A, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:765–767PubMedCrossRefGoogle Scholar
  29. Donne A (1842) De l’origine des globules du sang, de leur mode de formation, de leur fin. CR Acad Sci 4:366Google Scholar
  30. Druker BJ, Lydon NB (2000) Lessons learned from the development of an Abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105:3–7PubMedCrossRefGoogle Scholar
  31. Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566PubMedCrossRefGoogle Scholar
  32. Eckhardt S, Sellei C, Horvath IP, Institorisz L (1963) Effect of 1,6-dibromo-1,6-dideoxy-D-mannitol on chronic granulocytic leukemia. Cancer Chemother Rep 33:57–71PubMedGoogle Scholar
  33. Ehrlich P (1891) Farbenanalytische Untersuchungen zur Histologie und Klinik des Blutes. Hirschwald, BerlinGoogle Scholar
  34. Elefanty AG, Hariharan IK, Cory S (1990) Bcr-abl, the hallmark of chronic myeloid leukemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 9:1069–1078PubMedGoogle Scholar
  35. Fefer A, Cheever MA, Thomas ED et al (1979) Disappearance of Ph1 positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. New Engl J Med 300:333–337PubMedCrossRefGoogle Scholar
  36. Fialkow PJ, Gartler SM, Yoshida A (1967) Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 58:1468–1471PubMedCrossRefGoogle Scholar
  37. Fialkow PJ, Jacobson RJ, Papayannopoulou T et al (1977) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, and platelet, and monocyte/macrophage. Am J Med 63:125–130PubMedCrossRefGoogle Scholar
  38. Fialkow PJ, Martin PJ, Najfeld V et al (1981) Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 58:158–163PubMedGoogle Scholar
  39. Forkner CE (1938) Leukemia and allied disorders, 1st edn. Macmillan, New YorkGoogle Scholar
  40. Fuller HW (1846) Particulars of a case in which enormous enlargement of the spleen and liver, together with dilatation of all vessels in the body were found coincident with a peculiarly altered condition of the blood. Lancet 2:43–44Google Scholar
  41. Galton DAG (1953) Myleran in chronic myeloid leukaemia. Lancet i:208–213CrossRefGoogle Scholar
  42. Galton DAG (1959) Treatment of the chronic leukaemias. Brit Med Bull 15:79–86Google Scholar
  43. Gambacorti-Passerini C, le Coutre P, Mologni L et al (1997) Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ cells and induces apoptosis. Blood Cells Mol Dis 23:380–384PubMedCrossRefGoogle Scholar
  44. Geary CG (2000) The story of chronic myeloid leukaemia. Br J Haematol 110:2–11PubMedCrossRefGoogle Scholar
  45. Goff SP, Gilboa E, Witte ON, Baltimore D (1980) Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell 22:777–785PubMedCrossRefGoogle Scholar
  46. Goldman JM, Catovsky D, Hows J, Spiers ASD, Galton DAG (1979) Cryopreserved peripheral blood cells functioning as autografts in patients with chronic granulocytic leukaemia. Brit Med J 1:1310–1313PubMedGoogle Scholar
  47. Goldman JM, Baughan ASJ, McCarthy DM et al (1983) Marrow transplantation for patients in the chronic phase of chronic granulocytic leukaemia. Lancet 2:623–625Google Scholar
  48. Goldman JM, Apperley JF, Jones L, et al (1986) Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 314:202–207PubMedCrossRefGoogle Scholar
  49. Goldman JM, Grosveld G, Baltimore D, Gale RP (1990) Chronic myelogenous leukemia — the unfolding saga. Leukemia 4:163–167PubMedGoogle Scholar
  50. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT (1946) Nitrogen mustard therapy. JAMA 132: 126–132Google Scholar
  51. Groffen J, Stephenson JR, Heisterkamp N et al (1984) Philadelphia chromosome breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99PubMedCrossRefGoogle Scholar
  52. Grosveld G, Verwoerd T, van Agthoven T et al (1986) The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/abl transcript. Mol Cell Biol 6:607–616PubMedGoogle Scholar
  53. Guilhot F, Chastang C, Michallet M et al (1997) Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. New Engl J Med 337:223–229PubMedCrossRefGoogle Scholar
  54. Haddow A, Timmis GM (1953) Myleran in chronic myeloid leukaemia: chemical constitution and biological function. Lancet 1:207–208CrossRefGoogle Scholar
  55. Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A et al (1983) Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306:239–242PubMedCrossRefGoogle Scholar
  56. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale P, Groffen J (1990) Acute leukemia in BCR/ABL transgenic mice. Nature 344:251–253PubMedCrossRefGoogle Scholar
  57. Hoffman WJ, Craver LF (1931) Chronic myelogenous leukaemia: value of irradiation and its effect on duration of life. J Amer Med Ass 97:836–840Google Scholar
  58. Horowitz MM, Gale RP, Sondel PM et al (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555–562PubMedGoogle Scholar
  59. Hoyle C, Gray R, Goldman JM (1994) Autografting for patients with CML in chronic phase: an update. Br J Haematol 86:76–81PubMedGoogle Scholar
  60. Italian Cooperative Study Group on Chronic Myeloid Leukemia (1994) Interferon alfa-2a as compared with conventional chemotherapy for treatment of chronic myeloid leukemia. New Engl J Med 330:820–825CrossRefGoogle Scholar
  61. Jacobson LO, Spurr CL, Barron ESG, Smith T, Lushbaugh C, Dick GF (1946) Nitrogen mustard therapy. JAMA 132:263–271Google Scholar
  62. Kaur G, Gazit A, Levitzki A et al (1994) Tyrphostin induced growth inhibition: correlation with effect on p210bcr-abl autokinase activitiy in K562 chronic myelogenous leukemia. Anticancer Drugs 5:213–222PubMedCrossRefGoogle Scholar
  63. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990) Induction of a chronic myelogenmous leukemia-like syndrome with v-abl and BCR/ABL. Proc Natl Acad Sci USA 87:6649–6653PubMedCrossRefGoogle Scholar
  64. Kennedy BJ (1969) Hydroxyurea in chronic myelogenous leukemia. Ann Intern Med 70:1084–1085Google Scholar
  65. Kolb HJ, Mittermuller J, Clemm C et al (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465PubMedGoogle Scholar
  66. Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37:1035–1042PubMedCrossRefGoogle Scholar
  67. Lawrence JH, Scott KG, Tuttle LW (1939) Studies on leukaemia with the aid of radioactive phosphorus. Int Clin 3:33–58Google Scholar
  68. le Coutre P, Mologni L, Cleris L et al (1999) In vivo eradication of human BCR/ABL positive leukemia with an Abl kinase inhibitor. J Natl Cancer Inst 91:163–168PubMedCrossRefGoogle Scholar
  69. Lissauer (initials unknown) (1865) Zwei Fälle von Leukämie. Berliner Klinische Wochenshrift 2:403–404Google Scholar
  70. Lowenthal RM, Buskard NA, Goldman JM, Spiers ASD, Bergier N, Graubner M, Galton DAG (1975) Intensive leucapheresis as initial therapy of chronic granulocytic leukemia. Blood 46:835–840PubMedGoogle Scholar
  71. Luger SM, O’Brien SG, Ratajczak J et al (2002) Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99:1150–1158PubMedCrossRefGoogle Scholar
  72. Lydon NB, Druker BJ (2004) Lessons learned from the development of imatinib. Leuk Res 28S1:S29–S38CrossRefGoogle Scholar
  73. Mackinnon S, Papadopoulos E, Carabasi M et al (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia from graft-versus-host disease. Blood 86:1261–1268PubMedGoogle Scholar
  74. McGlave PB, Arthur DC, Kim TH et al (1982) Successful allogeneic bone-marrow transplantation for patients in the accelerated phase of chronic granulocytic leukaemia. Lancet 2(8299):625–627PubMedCrossRefGoogle Scholar
  75. McGlave PB, de Fabritiis P, Deisseroth J et al (1994) Autologous transplants for chronic myelogenous leukaemia: results from eight transplant groups. Lancet 343:1486–1488PubMedCrossRefGoogle Scholar
  76. Medical Research Council’s Working Party for Therapeutic Trials in Leukaemia (1968) Chronic granulocytic leukaemia: comparison of radiotherapy and busulphan therapy. Br Med J 1:201–208CrossRefGoogle Scholar
  77. Melo JV, Gordon DE, Cross NCP, Goldman JM (1993) The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81:158–165PubMedGoogle Scholar
  78. Minot GR, Buckman TE, Isaacs R (1924) Chronic myelogenous leukaemia: age incidence, duration and benefit derived from irradiation. JAMA 82:1489–1494Google Scholar
  79. Morse EE, Carbone PP, Freireich EJ, Bronson W, Kliman A (1966) Repeated leukapheresis of patients with chronic myelocytic leukemia. Transfusion 6:175–182CrossRefGoogle Scholar
  80. Nowell PC, Hungerford DA (1960a) Chromosome studies on normal and leukemic leukocytes. J Natl Cancer Inst 25:85–109PubMedGoogle Scholar
  81. Nowell PC, Hungerford DA (1960 b) A minute chromosome in human granulocytic leukemia. Science 132:1497Google Scholar
  82. Okabe M, Uehara Y, Miyagishima T et al (1992) Effect of herbimycin A, an antagonist of tyrosine kinase, on bcr/abl oncoprotein-associated cell proliferations: abrogative effect on the transformation of murine hematopoietic cells by transfection of a retroviral vector expressing oncoprotein P210bcr/abl and preferential inhibition of Ph1-positive leukemia cell growth. Blood 80:1330–1338PubMedGoogle Scholar
  83. Piller G (1993) The history of leukemia: a personal perspective. Blood Cells 19:521–529PubMedGoogle Scholar
  84. Piller GJ (2001) Leukaemia — a brief historical review from ancient times to 1950. Br J Haematol 112:282–292PubMedCrossRefGoogle Scholar
  85. Pusey WA (1902) Report of cases treated with Roentgen rays. JAMA 38:911–919Google Scholar
  86. Reddy EP, Smith MJ, Srinivasan A (1983) Nucleotide sequence of the Abelson murine leukemia virus genome: structural similarity of its transforming gene product to other onc gene products with tyrosine kinase activity. Proc Natl Acad Sci USA 80:3623–3627PubMedCrossRefGoogle Scholar
  87. Reinhard EH, Moore CV, Bierbaum OS, Moore S (1946) Radioactive phosphorus as a therapeutic agent. A review of the literature and analysis of the results of treatment of 155 patients with various blood dyscrasias, lymphomas and other malignant neoplastic diseases. J Lab Clin Med 31:107–216Google Scholar
  88. Rowley JD (1973) A new consistent chromosome abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa banding. Nature 243:290–293PubMedCrossRefGoogle Scholar
  89. Senn N (1903) Therapeutical value of Roentgen ray in treatment of pseudoleukemia. NY Med J 77:665Google Scholar
  90. Shields A, Goff S, Paskind M, Otto G, Baltimore D (1979) Structure of the Abelson murine leukemia virus genome. Cell 18:955–962PubMedCrossRefGoogle Scholar
  91. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E (1985) Fused transcript of bcr and abl genes in chronic myelogenous leukaemia. Nature 315:550–554PubMedCrossRefGoogle Scholar
  92. Speck B, Bortin M, Champlin RE et al (1984) Allogeneic bone marrow transplantation for chronic myelogenous leukaemia. Lancet 1(8378):665–668PubMedCrossRefGoogle Scholar
  93. Talpaz M, McCredie KB, Malvigit GM, Gutterman JU (1983) Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukaemia. Ann Intern Med 62:689–692Google Scholar
  94. Talpaz M, Kantarjian HM, McCredie K et al (1986) Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha-A in chronic myelogenous leukemia. New Engl J Med 314:1065–1069PubMedCrossRefGoogle Scholar
  95. Thomas ED, Clift RA, Fefer A et al (1986) Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med 104:155–163PubMedGoogle Scholar
  96. Velpeau A (1827) Sur la resorption du pus et sur l’alteration du sang dans les maladies cliniques de persection nenemant. Premier observation. Rev Med 2:216–218Google Scholar
  97. Virchow R (1846) Weisses Blut und Milztumoren. Med Z 15:157Google Scholar
  98. Virchow R (1853) Zur pathologischen Physiologic des Bluts: Die Bedeutung der milz-und lymph-drusen-Krankheiten fur die Blutmischung (Leukaemia). Virchows Arch 5:43CrossRefGoogle Scholar
  99. Wolff NC, Ilaria RL (2001) Establishment of a murine model for therapy treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98:2808–2816PubMedCrossRefGoogle Scholar
  100. Wong S, Witte ON (2004) The BCR-ABL story: Bench to bedside and back. Ann Rev Immunol 22:247–306CrossRefGoogle Scholar
  101. Wood GB (1850) Trans Coll Phys, Philadelphia, p 265Google Scholar
  102. Zimmermann J, Buchdunger E, Mett H et al (1996) Phenylaminopyrimidine (PAP)-derivatives: A new class of potent and highly selective PDGF receptor autophosphorylation inhibitors. Bioorg Chem Med Lett 6:1221–1226CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • John M. Goldman
    • 1
  • George Q. Daley
    • 2
  1. 1.Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Division of Hematology/OncologyChildren’s HospitalBostonUSA

Personalised recommendations