Advertisement

Multilevel Methods for Eigenspace Computations in Structural Dynamics

  • Ulrich L. Hetmaniuk
  • Richard B. Lehoucq
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)

Abstract

Modal analysis of three-dimensional structures frequently involves finite element discretizations with millions of unknowns and requires computing hundreds or thousands of eigenpairs.We review in this paper methods based on domain decomposition for such eigenspace computations in structural dynamics. We distinguish approaches that solve the eigenproblem algebraically (with minimal connections to the underlying partial differential equation) from approaches that couple tightly the eigensolver with the partial differential equation.

Keywords

Eigenvalue Problem Multigrid Method Sandia National Laboratory Rayleigh Quotient Multilevel Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adams, Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics, Internat. J. Numer. Methods Engrg., 55 (2002), pp. 519–534.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro, A comparison of Eigensolvers for large-scale 3D modal analysis using AMGpreconditioned iterative methods, Internat. J. Numer. Methods Engrg., 64 (2005), pp. 204–236.zbMATHCrossRefGoogle Scholar
  3. 3.
    I. Babuška and J. E. Osborn, Eigenvalue problems, vol. II of Handbook of numerical analysis, Elsevier, 1991, pp. 641–788.Google Scholar
  4. 4.
    J. K. Bennighof, M. F. Kaplan, and M. B. Muller, Extending the frequency response capabilities of automated multi-level substructuring, in AIAA Dynamics Specialists Conference, Atlanta, April 2000. AIAA-2000-1574.Google Scholar
  5. 5.
    J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring method for Eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25 (2004), pp. 2084–2106.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Bergamaschi, G. Pini, and F. Sartoretto, Approximate inverse preconditioning in the parallel solution of sparse Eigenproblems, Numer. Linear Algebra Appl., 7 (2000), pp. 99–116.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Bhardwaj, K. Pierson, G. Reese, T. Walsh, D. Day, K. Alvin, J. Peery, C. Farhat, and M. Lesoinne, Salinas: A scalable software for high-performance structural and solid mechanics simulations, in Proceedings of 2002 ACM/IEEE Conference on Supercomputing, 2002, pp. 1–19. Gordon Bell Award.Google Scholar
  8. 8.
    M. Bhardwaj, G. Reese, B. Driessen, K. Alvin, and D. Day, Salinas - an implicit finite element structural dynamics code developed for massively parallel platforms, in Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC SDM Conference, April 2000.Google Scholar
  9. 9.
    F. Bourquin, Analysis and comparison of several component mode synthesis methods on one-dimensional domains, Numer. Math., 58 (1990), pp. 11–33.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. Bourquin, Synthèse modale et analyse numérique des multistructures élastiques, PhD thesis, Université Paris VI, 1991.Google Scholar
  11. 11.
    F. Bourquin, Component mode synthesis and Eigenvalues of second order operators: Discretization and algorithm, Math. Model. Numer. Anal., 26 (1992), pp. 385–423.zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Brandt, S. McCormick, and J. Ruge, Multigrid methods for differential Eigenproblems, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 244–260.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Z. Cai, J. Mandel, and S. McCormick, Multigrid methods for nearly singular linear equations and Eigenvalue problems, SIAM J. Numerical Analysis, 34 (1997), pp. 178–200.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. F. Chan and I. Sharapov, Subspace correction multi-level methods for elliptic Eigenvalue problems, Numer. Linear Algebra Appl., 9 (2002), pp. 1–20.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    I. Charpentier, F. De Vuyst, and Y. Maday, Méthode de synthèse modale avec une décomposition de domaine par recouvrement, C. R. Acad. Sci. Paris, Série I, 322 (1996), pp. 881–888.zbMATHGoogle Scholar
  16. 16.
    R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of Finite Element Analysis, John Wiley & Sons, Inc, 2002.Google Scholar
  17. 17.
    R. R. Craig, Jr. and M. C. C. Bampton, Coupling of substructures for dynamic analysis, AIAA Journal, 6 (1968), pp. 1313–1319.zbMATHCrossRefGoogle Scholar
  18. 18.
    E. R. Davidson, The iterative calculation of a few of the lowest Eigenvalues and corresponding Eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 817–825.CrossRefGoogle Scholar
  19. 19.
    C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput., 25 (2003), pp. 246–258.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric Eigenvalue problems, Math. Comp., 35 (1980), pp. 1251–1268.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl., 7 (2000), pp. 687–714.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    C. Farhat, J. Li, and P. Avery, A FETI-DP method for the parallel iterative solution of indefinite and complex-valued solid and shell vibration problems, Internat. J. Numer. Methods Engrg., 63 (2005), pp. 398–427.zbMATHCrossRefGoogle Scholar
  23. 23.
    C. Farhat and F.-X. Roux, A method of Finite Element Tearing and Interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32 (1991), pp. 1205–1227.zbMATHCrossRefGoogle Scholar
  24. 24.
    Y. T. Feng and D. R. J. Owen, Conjugate gradient methods for solving the smallest Eigenpair of large symmetric Eigenvalue problems, Internat. J. Numer. Methods Engrg., 39 (1996), pp. 2209–2229.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    T. Friese, Eine Mehrgitter-Methode zur Lösung des Eigenwertproblems der komplexen Helmholtzgleichung, PhD thesis, Freie Universität Berlin, 1998.Google Scholar
  26. 26.
    R. G. Grimes, J. G. Lewis, and H. D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric generalized Eigenproblems, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 228–272.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    W. Hackbusch, On the computation of approximate Eigenvalues and Eigenfunctions of elliptic operators by means of a multi-grid method, SIAM J. Numerical Analysis, 16 (1979), pp. 201–215.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M. R. Hestenes and W. Karush, A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix, Journal of Research of the National Bureau of Standards, 47 (1951), pp. 45–61.MathSciNetGoogle Scholar
  29. 29.
    W. C. Hurty, Vibrations of structural systems by component-mode synthesis, Journal of the Engineering Mechanics Division, ASCE, 86 (1960), pp. 51–69.Google Scholar
  30. 30.
    A. V. Knyazev, Preconditioned Eigensolvers-an oxymoron, Electron. Trans. Numer. Anal., 7 (1998), pp. 104–123.zbMATHMathSciNetGoogle Scholar
  31. 31.
    A. V. Knyazev, Toward the optimal preconditioned Eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    A. V. Knyazev and K. Neymeyr, Efficient solution of symmetric Eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method, Electron. Trans. Numer. Anal., 7 (2003), pp. 38–55.MathSciNetGoogle Scholar
  33. 33.
    A. Kropp and D. Heiserer, Efficient broadband vibro-accoustic analysis of passenger car bodies using an FE-based component mode synthesis approach, in FifthWorld Congress on Computational Mechanics (WCCM V) July 7–12, H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, eds., Austria, 2002, Vienna University of Technology. ISBN 3-9501554-0-6 (http://wccm.tuwien.ac.at).Google Scholar
  34. 34.
    R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Phildelphia, PA, 1998.Google Scholar
  35. 35.
    D. E. Longsine and S. F. McCormick, Simultaneous Rayleigh-quotient minimization for Ax = γBx, Linear Algebra Appl., 34 (1980), pp. 195–234.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    R. H. MacNeal, A hybrid method of component mode synthesis, Comput. & Structures, 1 (1971), pp. 581–601.CrossRefGoogle Scholar
  37. 37.
    J. Mandel and S. McCormick, A multilevel variational method for Au = γBu on composite grids, J. Comput. Phys., 80 (1989), pp. 442–452.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    K. J. Maschhoff and D. C. Sorensen, P_ARPACK: An effcient portable large scale Eigenvalue package for distributed memory parallel architectures, in Applied Parallel Computing in Industrial Problems and Optimization, J. Wasniewski, J. Dongarra, K. Madsen, and D. Olesen, eds., vol. 1184 of Lecture Notes in Computer Science, Springer-Verlag, 1996.Google Scholar
  39. 39.
    R. Namar, Méthodes de synthèse modale pour le calcul des vibrations des structures, PhD thesis, Université Paris VI, 2000.Google Scholar
  40. 40.
    K. Neymeyr, Solving mesh Eigenproblems with multigrid efficiency, in Numerical methods for scientific computing. Variational problems and applications, Y. A. Kuznetsov, P. Neittaanmäki, and O. Pironneau, eds., 2003.Google Scholar
  41. 41.
    Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric Eigenproblem, Numer. Linear Algebra Appl., 9 (2002), pp. 21–44.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    E. Ovtchinnikov, Convergence estimates for the generalized Davidson method for symmetric Eigenvalue problems I: The preconditioning aspect, SIAMJ. Matrix Anal. Appl., 41 (2003), pp. 258–271.zbMATHMathSciNetGoogle Scholar
  43. 43.
    E. Ovtchinnikov, Convergence estimates for the generalized Davidson method for symmetric Eigenvalue problems II: The subspace acceleration, SIAM J. Matrix Anal. Appl., 41 (2003), pp. 272–286.zbMATHMathSciNetGoogle Scholar
  44. 44.
    K. H. Pierson, G. M. Reese, and P. Raghavan, Experiences with FETIDP in a production level finite element application, in Fourteenth International Conference on Domain Decomposition Methods, I. Herrera, D. E. Keyes, O. B. Widlund, and R. Yates, eds., ddm.org, 2003.Google Scholar
  45. 45.
    D. J. Rixen, A dual Craig-Bampton method for dynamic substructuring, J. Comput. Appl. Math., 168 (2004), pp. 383–391.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    P. Seshu, Substructuring and component mode synthesis, Shock and Vibration, 4 (1997), pp. 199–210.Google Scholar
  47. 47.
    G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear Eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425. Reappeared in SIAM Review 42:267–293, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973.zbMATHGoogle Scholar
  49. 49.
    K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001), pp. 281–309.zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for second and fourth order problems, Computing, 56 (1996), pp. 179–196.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ulrich L. Hetmaniuk
    • 1
  • Richard B. Lehoucq
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations