Balancing Domain Decomposition Methods for Mortar Coupling Stokes-Darcy Systems

  • Juan Galvis
  • Marcus Sarkis
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)


We consider Stokes equations in the fluid region Ωf and Darcy equations for the filtration velocity in the porous medium Ωp, and coupled at the interface G with adequate transmission conditions. Such problem appears in several applications like well-reservoir coupling in petroleum engineering, transport of substances across groundwater and surface water, and (bio)fluid-organ interactions.


Piecewise Constant Function Balance Function Darcy Equation Coarse Space Multiplier Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Discacciati, Iterative methods for Stokes/Darcy coupling, in Proceedings of the 15th international conference on Domain Decomposition Methods, R. Kornhuber, R. H. W. Hoppe, J. Péeriaux, O. Pironneau, O. B. Widlund, and J. Xu, eds., vol. 40 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2004, pp. 563–570.Google Scholar
  2. 2.
    M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical modeling for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57–74.zbMATHCrossRefGoogle Scholar
  3. 3.
    M. Discacciati and A. Quarteroni, Analysis of a domain decomp. Method for the coupling for the Stokes and Darcy equations, in Numerical analysis and advanced applications - Proceedings of ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, eds., Springer-Verlag Italia, 2003.Google Scholar
  4. 4.
    M. Discacciati, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci., 6 (2004), pp. 93–103.zbMATHGoogle Scholar
  5. 5.
    M. Dryja and W. Proskurowski, On preconditioners for mortar discretization of elliptic problems, Numer. Linear Algebra Appl., 10 (2003), pp. 65–82.zbMATHCrossRefGoogle Scholar
  6. 6.
    J. Galvis and M. Sarkis, Inf-sup conditions and discrete error analysis for a non-matching mortar discretization for coupling Stokes-Darcy equations. Submitted, 2006.Google Scholar
  7. 7.
    J. C. Galvis and M. Sarkis, Inf-sup for coupling Stokes-Darcy, in Proceedings of the XXV Iberian Latin American Congress in Computational Methods in Engineering, A. L. et al., ed., Universidade Federal de Pernambuco, 2004.Google Scholar
  8. 8.
    W. J. Layton, F. Schieweck, and I. Yotov, Coupling fuuid flow with porous media flow, SIAM J. Num. Anal., 40 (2003), pp. 2195–2218.zbMATHCrossRefGoogle Scholar
  9. 9.
    J. Mandel, Balancing domain decomposition, Comm. Numer. Meth. Engrg., 9 (1993), pp. 233–241.zbMATHCrossRefGoogle Scholar
  10. 10.
    T. P. Mathew, Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems, PhD thesis, Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, September 1989.Google Scholar
  11. 11.
    L. F. Pavarino and O. B. Widlund, Balancing Neumann-Neumann methods for incompressible Stokes equations, Comm. Pure Appl. Math., 55 (2002), pp. 302–335.zbMATHCrossRefGoogle Scholar
  12. 12.
    B. M. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), pp. 1959–1977.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Juan Galvis
    • 1
  • Marcus Sarkis
    • 2
    • 3
  1. 1.Instituto Nacional de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Instituto Nacional de Matemática Pura e AplicadaRio de JaneiroBrazil
  3. 3.Worcester Polytechnic InstituteWorcesterUSA

Personalised recommendations