Advertisement

Heterogeneous Domain Decomposition Methods for Fluid-Structure Interaction Problems

  • Simone Deparis
  • Marco Discacciati
  • Gilles Fourestey
  • Alfio Quarteroni
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)

Abstract

In this note, we propose Steklov-Poincaré iterative algorithms (mutuated from the analogy with heterogeneous domain decomposition) to solve fluidstructure interaction problems. Although our framework is very general, the driving application is concerned with the interaction of blood flow and vessel walls in large arteries.

Keywords

Normal Stress Newton Method Domain Decomposition Domain Decomposition Method Scaling Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Causin, J.-F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4506–4527.zbMATHCrossRefGoogle Scholar
  2. 2.
    M. Cervera, R. Codina, and M. Galindo, On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems, Engrg. Comput., 13 (1996), pp. 4–30.zbMATHCrossRefGoogle Scholar
  3. 3.
    S. Deparis, Numerical Analysis of Axisymmetric Flows and Methods for Fluid-Structure Interaction Arising in Blood Flow Simulation, PhD thesis, école Polytechnique Fédérale de Lausanne, 2004.Google Scholar
  4. 4.
    S. Deparis, M. Discacciati, and A. Quarteroni, A domain decomposition framework for fluid-structure interaction problems, in Proceedings of the Third International Conference on Computational Fluid Dynamics, C. Groth and D. W. Zingg, eds., Springer, May 2006.Google Scholar
  5. 5.
    M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows, PhDthesis, école Polytechnique Fédérale de Lausanne, 2004.Google Scholar
  6. 6.
    J. Donea, Arbitrary Lagrangian Eulerian finite element methods, in Computational Methods for Transient Analysis, vol. 1 of Computational Methods in Mechanics, Amsterdam, North-Holland, 1983, pp. 473–516.Google Scholar
  7. 7.
    L. Fatone, P. Gervasio, and A. Quarteroni, Multimodels for incompressible flows, J. Math. Fluid Mech., 2 (2000), pp. 126–150.zbMATHCrossRefGoogle Scholar
  8. 8.
    L. Fatone, Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling, Math. Model. Numer. Anal., 35 (2001), pp. 549–574.zbMATHCrossRefGoogle Scholar
  9. 9.
    M. A. Fernández and M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure coupling, Comput. & Structures, 83 (2005), pp. 127–142.CrossRefGoogle Scholar
  10. 10.
    J. C. Galvis and M. Sarkis, Inf-sup for coupling Stokes-Darcy, in Proceedings of the XXV Iberian Latin American Congress in Computational Methods in Engineering, A. L. et al., ed., Universidade Federal de Pernambuco, 2004.Google Scholar
  11. 11.
    F. Gastaldi, A. Quarteroni, and G. S. Landriani, On the coupling of two-dimensional hyperbolic and elliptic equations: analytical and numerical approach, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA, 1990, SIAM, pp. 22–63.Google Scholar
  12. 12.
    J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, Math. Model. Numer. Anal., 37 (2003), pp. 631–647.zbMATHCrossRefGoogle Scholar
  13. 13.
    M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1–23.zbMATHCrossRefGoogle Scholar
  14. 14.
    T. J. Hughes, W. K. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible flows, Comput. Methods Appl. Mech. Engrg., 29 (1981), pp. 329–349.zbMATHCrossRefGoogle Scholar
  15. 15.
    G. Karner, K. Perktold, M. Hofer, and D. Liepsch, Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model, Comput. Methods Biomech. Biomed. Engrg., 2 (1999), pp. 171–185.CrossRefGoogle Scholar
  16. 16.
    W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Num. Anal., 40 (2003), pp. 2195–2218.zbMATHCrossRefGoogle Scholar
  17. 17.
    J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994. Reprint.Google Scholar
  18. 18.
    D. P. Mok and W. A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, in Proceedings of the International Conference Trends in Computational Structural Mechanics, K. Schweizerhof and W. A. Wall, eds., K.U. Bletzinger, CIMNE, Barcelona, 2001.Google Scholar
  19. 19.
    J. Mouro, Interactions Fluide Structure en Grands Déplacements. Résolution Numérique et Application aux Composants Hydrauliques Automobiles, PhD thesis, école Polytechnique, Paris, September 1996.Google Scholar
  20. 20.
    F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics, PhD thesis, école Polytechnique Fédérale de Lausanne, 2001.Google Scholar
  21. 21.
    A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Modelling of Living Systems, P. G. Ciarlet and J. L. Lions, eds., vol. 12 of Handbook of Numerical Analysis, Elsevier, Amsterdam, 2004, pp. 3–127.Google Scholar
  22. 22.
    A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, Springer, New York, 2000.Google Scholar
  23. 23.
    A. Quarteroni, A. Veneziani, and P. Zunino, A domain decomposition method for advection-diffusion processes with application to blood solutes, SIAM J. Sci. Comput., 23 (2002), pp. 1959–1980.zbMATHCrossRefGoogle Scholar
  24. 24.
    P. L. Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 3039–3067.zbMATHCrossRefGoogle Scholar
  25. 25.
    P. Zunino, Iterative substructuring methods for advection-diffusion problems in heterogeneous media, in Challenges in Scientific Computing—CISC 2002, vol. 35 of Lecture Notes in Computational Science and Engineering, Springer, 2003, pp. 184–210.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Simone Deparis
    • 1
  • Marco Discacciati
    • 2
  • Gilles Fourestey
    • 2
  • Alfio Quarteroni
    • 2
    • 3
  1. 1.Mechanical Engineering DepartmentMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.EPFLIACS - Chair of Modeling and Scientific ComputingLausanneSwitzerland
  3. 3.Politecnico di MilanoMOXMilanoItaly

Personalised recommendations