Advection Diffusion Problems with Pure Advection Approximation in Subregions

  • Martin J. Gander
  • Laurence Halpern
  • Caroline Japhet
  • Véronique Martin
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)


We study in this paper a model problem of advection diffusion type on a region which contains a subregion where it is sufficient to approximate the problem by the pure advection equation. We define coupling conditions at the interface between the two regions which lead to a coupled solution which approximates the fully viscous solution more accurately than other conditions from the literature, and we develop a fast algorithm to solve the coupled problem.


Coupling Condition Transmission Condition Domain Decomposition Method Viscous Solution Absorb Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Dubach, Contribution a la résolution des equations fluides en domaine non borné, PhD thesis, Universite Paris 13, Fevrier 1993.Google Scholar
  2. 2.
    O. Dubois, Optimized Schwarz methods for the advection-diffusion equation, Master's thesis, McGill University, 2003.Google Scholar
  3. 3.
    M. J. Gander, L. Halpern, and C. Japhet, Optimized Schwarz algorithms for coupling convection and convection-diffusion problems, in Thirteenth international conference on domain decomposition, N. Debit, M. Garbey, R. Hoppe, J. Périaux, D. Keyes, and Y. Kuznetsov, eds.,, 2001, pp. 253–260.Google Scholar
  4. 4.
    F. Gastaldi, A. Quarteroni, and G. S. Landriani, On the coupling of twodimensional hyperbolic and elliptic equations: analytical and numerical approach, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA, 1990, SIAM, pp. 22–63.Google Scholar
  5. 5.
    C. Japhet, Méthode de décomposition de domaine et conditions aux limites arti ficielles en mécanique des fluides: méthode optimisée d'ordre 2, PhD thesis, Université Paris 13, 1998.Google Scholar
  6. 6.
    A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, 1999.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Martin J. Gander
    • 1
  • Laurence Halpern
    • 2
  • Caroline Japhet
    • 2
  • Véronique Martin
    • 3
  1. 1.Université de GenèveGenèveSwitzerland
  2. 2.LAGA, Université Paris XIIIVilletaneuseFrance
  3. 3.LAMFA UMR 6140Université Picardie Jules VerneAmiens Cedex 1France

Personalised recommendations