Advertisement

Optimized Schwarz Methods with Robin Conditions for the Advection-Diffusion Equation

  • Olivier Dubois
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)

Abstract

We study optimized Schwarz methods for the stationary advectiondiffusion equation in two dimensions. We look at simple Robin transmission conditions, with one free parameter. In the nonoverlapping case, we solve exactly the associated min-max problem to get a direct formula for the optimized parameter. In the overlapping situation, we solve only an approximate min-max problem. The asymptotic performance of the resulting methods, for small mesh sizes, is derived. Numerical experiments illustrate the improved convergence compared to other Robin conditions.

Keywords

Unique Minimizer Domain Decomposition Method Asymptotic Performance Convergence Factor Schwarz Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Dubois, Optimized Schwarz methods for the advection-diffusion equation, Master's thesis, McGill University, 2003.Google Scholar
  2. 2.
    M. J. Gander, Optimized Schwarz methods for Helmholtz problems, in Thirteenth international conference on domain decomposition, N. Debit, M. Garbey, R. Hoppe, J. Périaux, D. Keyes, and Y. Kuznetsov, eds., 2001, pp. 245–252.Google Scholar
  3. 3.
    M. J. Gander, Optimized Schwarz methods, Tech. Rep. 2003–01, Dept. of Mathematics and Statistics, McGill University, 2003. In revision for SIAM J. Numer. Anal.Google Scholar
  4. 4.
    M. J. Gander, L. Halpern, and F. Nataf, Optimized Schwarz methods, in Twelfth International Conference on Domain Decomposition Methods, Chiba, Japan, T. Chan, T. Kako, H. Kawarada, and O. Pironneau, eds., Bergen, 2001, Domain Decomposition Press, pp. 15–28.Google Scholar
  5. 5.
    M. J. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 38–60.zbMATHCrossRefGoogle Scholar
  6. 6.
    C. Japhet, Conditions aux limites artificielles et dècomposition de domaine: Mèthode oo2 (optimisè d'ordre 2). Application ó la rèsolution de problémes en Mécanique des fluids, Tech. Rep. 373, CMAP (Ecole Polytechnique), 1997.Google Scholar
  7. 7.
    C. Japhet, Optimized Krylov-Ventcell method. Application to convection-diffusion problems, in Proceedings of the 9th international conference on domain decomposition methods, P. E. Bjørstad, M. S. Espedal, and D. E. Keyes, eds., ddm.org, 1998, pp. 382–389.Google Scholar
  8. 8.
    P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA, 1990, SIAM.Google Scholar
  9. 9.
    F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, Math. Models Methods Appl. Sci., 5 (1995), pp. 67–93.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Olivier Dubois
    • 1
  1. 1.Department of Mathematics & StatisticsMcGill UniversityQuébecCanada

Personalised recommendations