Optimized Schwarz Methods in Spherical Geometry with an Overset Grid System

  • Jean Côté
  • Martin J. Gander
  • Lahcen Laayouni
  • Abdessamad Qaddouri
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)


In recent years, much attention has been given to domain decomposition methods for solving linear elliptic problems that are based on a partitioning of the domain of the physical problem. More recently, a new class of Schwarz methods known as optimized Schwarz methods was introduced to improve the performance of the classical Schwarz methods.


Model Problem Grid System Spherical Geometry Homogeneous Problem Domain Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Charton, F. Nataf, and F. Rogier, Méthode de décomposition de domaine pour l'équation d'advection-diffusion, C. R. Acad. Sci., 313 (1991), pp. 623–626.zbMATHGoogle Scholar
  2. 2.
    M. J. Gander, L. Halpern, and F. Nataf, Optimized Schwarz methods, in Twelfth International Conference on Domain Decomposition Methods, Chiba, Japan, T. Chan, T. Kako, H. Kawarada, and O. Pironneau, eds., Bergen, 2001, Domain Decomposition Press, pp. 15–28.Google Scholar
  3. 3.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Series, Products and Integrals, Verlag Harri Deutsch, Thun, 1981.Google Scholar
  4. 4.
    T. Hagstrom, R. P. Tewarson, and A. Jazcilevich, Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems, Appl. Math. Lett., 1 (1988).Google Scholar
  5. 5.
    C. Japhet, Optimized Krylov-Ventcell method. Application to convection-diffusion problems, in Proceedings of the 9th international conference on domain decomposition methods, P. E. Bjørstad, M. S. Espedal, and D. E. Keyes, eds.,, 1998, pp. 382–389.Google Scholar
  6. 6.
    A. Kageyama and T. Sato, The ‘Yin-Yang grid’ : An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5 (2004).Google Scholar
  7. 7.
    F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, M3AS, 5 (1995), pp. 67–93.zbMATHGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jean Côté
    • 1
  • Martin J. Gander
    • 2
  • Lahcen Laayouni
    • 3
  • Abdessamad Qaddouri
    • 4
  1. 1.Recherche en prévision numérique, Environment of CanadaQuebécCanada
  2. 2.Section de MathématiquesUniversité de GenèveSuisse
  3. 3.Department of Mathematics and StatisticsMcGill University, MontrealQuebécCanada
  4. 4.Recherche en prévision numérique, Environment of CanadaQuebécCanada

Personalised recommendations