Advertisement

Schur Complement Preconditioners for Distributed General Sparse Linear Systems

  • Yousef Saad
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 55)

Abstract

This paper discusses the Schur complement viewpoint when developing parallel preconditioners for general sparse linear systems. Schur complement methods are pervasive in numerical linear algebra where they represent a canonical way of implementing divide-and-conquer principles. The goal of this note is to give a brief overview of recent progress made in using these techniques for solving general, irregularly structured, sparse linear systems. The emphasis is to point out the impact of Domain Decomposition ideas on the design of general purpose sparse system solution methods, as well as to show ideas that are of a purely algebraic nature.

Keywords

Domain Decomposition Sparse Matrix Sparse Linear System Large Entry Diagonal Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Bank and C. Wagner, Multilevel ILU decomposition, Numer. Math., 82 (1999), pp. 543–576.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Benzi, J. C. Haws, and M. Tuma, Preconditioning highly indefinite and nonsymmetric matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Bollöfer, A robust ILU with pivoting based on monitoring the growth of the inverse factors, Lin. Alg. Appl., 338 (2001), pp. 201–218.CrossRefGoogle Scholar
  4. 4.
    M. Bollöfer and Y. Saad, ILUPACK - preconditioning software package, release v1.0, may 14, 2004. Available online athttp://www.tuberlin.de/ilupack/.Google Scholar
  5. 5.
    M. Bollöfer and Y. Saad, Multilevel preconditioners constructed from inverse-based ILUs, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1627–1650.Google Scholar
  6. 6.
    E. F. F. Botta, A. van der Ploeg, and F. W. Wubs, A fast linear-system solver for large unstructured problems on a shared-memory computer, in Proceedings of the Conference on Algebraic Multilevel Methods with Applications, O. Axelsson and B. Polman, eds., 1996, pp. 105–116.Google Scholar
  7. 7.
    E. F. F. Botta and F. W. Wubs, Matrix renumbering ILU: an effective algebraic multilevel ILU., SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1007–1026.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    U. V. Catalyurek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel and Distributed Systems, 10 (1999), pp. 673–693.CrossRefGoogle Scholar
  9. 9.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw Hill, New York, 1990.Google Scholar
  10. 10.
    I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. S. Duff and J. Koster,On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel Computing, 26 (2000), pp. 1519–1534.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    B. Hendrickson and R. Leland, The Chaco User's Guide Version 2, Sandia National Laboratories, Albuquerque NM, 1995.Google Scholar
  14. 14.
    P. Henon and Y. Saad, A parallel multilevel ILU factorization based on a hierarchical graph decomposition, Tech. Rep. UMSI-2004-74, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2004.Google Scholar
  15. 15.
    G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20 (1999), pp. 359–392.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. G. Kolda, Partitioning sparse rectangular matrices for parallel processing, Lecture Notes in Computer Science, 1457 (1998), pp. 68–79.CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. R. Leuze, Independent set orderings for parallel matrix factorizations by Gaussian elimination, Parallel Computing, 10 (1989), pp. 177–191.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Z. Li, Y. Saad, and M. Sosonkina, pARMS: a parallel version of the algebraic recursive multilevel solver, Numer. Linear Algebra Appl., 10 (2003), pp. 485–509.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. M. monga Made and H. A. van der Vorst, A generalized domain decomposition paradigm for parallel incomplete LU factorization preconditionings,Future Generation Computer Systems, 17 (2001), pp. 925–932.zbMATHCrossRefGoogle Scholar
  20. 20.
    M. M. monga Made and H. A. van der Vorst, Parallel incomplete factorizations with pseudo-overlapped subdomains,Parallel Computing, 27 (2001), pp. 989–1008.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. M. monga Made and H. A. van der Vorst, Spectral analysis of parallel incomplete factorizations with implicitpseudo-overlap, Numer. Linear Algebra Appl., 9 (2002), pp. 45–64.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Olschowska and A. Neumaier, A new pivoting strategy for Gaussian elimination, Lin. Alg. Appl., 240 (1996), pp. 131–151.zbMATHCrossRefGoogle Scholar
  23. 23.
    F. Pellegrini, SCOTCH 4.0 user's guide, tech. rep., INRIA Futurs, April 2005. http://www.labri.fr/perso/pelegrin/scotch/.Google Scholar
  24. 24.
    A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with Eigenvectors of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Y. Saad, ILUM: a multi-elimination ILU preconditioner for general sparse matrices, SIAM J. Sci. Comput., (1996), pp. 830–847.Google Scholar
  26. 26.
    Y. Saad, Multilevel ILU with reorderings for diagonal dominance, SIAM J. Sci. Comput., 27 (2005), pp. 1032–1057.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Y. Saad and M. Sosonkina, Non-standard parallel solution strategies for distributed sparse linear systems, in Parallel Computation: 4th international ACPC conference, Salzburg Austria, February 1999, P. Zinterhof, M. Vajtersic, and A. Uhl, eds., vol. 1557 of Lecture Notes in Computer Science, Springer-Verlag, 1999, pp. 13–27.Google Scholar
  28. 28.
    Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359–378.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    B. F. Smith, Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elasticity, PhD thesis, Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, September 1990.Google Scholar
  30. 30.
    A. van der Ploeg, E. F. F. Botta, and F. W. Wubs, Nested grids ILU decomposition (NGILU), J. Comp. Appl. Math., 66 (1996), pp. 515–526.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Yousef Saad
    • 1
  1. 1.Department of Computer Science and Engineering University of MinnesotaMinneapolisUSA

Personalised recommendations