Skip to main content

Nonlinearity and Stochasticity in Population Dynamics

  • Chapter
Mathematics for Ecology and Environmental Sciences

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1676 Accesses

Summary

Theoretical studies of population dynamics and ecological interactions tend to focus on asymptotic attractors of mathematical models. Modeling and experimental studies show, however, that even in controlled laboratory conditions the attractors of mathematical models are likely to be insufficient to explain observed temporal patterns in data. Instead, one is more likely to see a collage of many patterns that resemble various dynamics predicted by a deterministic model that arise during randomly occurring temporal episodes. These deterministic “signals” might include patterns characteristic of a model attractor (or several model attractors — even from possibly different deterministic models), transients both near and far from attractors, and/or unstable invariant sets and their stable manifolds. This paper discusses several examples taken from experimental projects in population dynamics that illustrate these and other tenets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J. D. (1997), Why don’t we believe the models?, Bulletin of the Ecological Society of America 78: 232–23

    Google Scholar 

  2. Caswell, H. (2001), Matrix Population Models: Construction, Analysis and Interpretation, Second edition, Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts

    Google Scholar 

  3. Costantino, R. F., R. A. Desharnais, J. M. Cushing and B. Dennis (1997), Chaotic dynamics in an insect population, Science 275: 389–391

    Article  Google Scholar 

  4. Costantino, R. F., J. M. Cushing, B. Dennis and R. A. Desharnais and S. M. Henson (1998), Resonant population cycles in temporally fluctuating habitats, Bulletin of Mathematical Biology 60: 247–275

    Article  MATH  Google Scholar 

  5. Cushing, J. M., B. Dennis, R. A. Desharnais, R. F. Costantino (1998), Moving toward an unstable equilibrium: saddle nodes in population systems, Journal of Animal Ecology 67: 298–306

    Article  Google Scholar 

  6. Cushing, J. M., R. F. Costantino, Brian Dennis, R. A. Desharnais, S. M. Henson (2003), Chaos in Ecology: Experimental Nonlinear Dynamics, Theoretical Ecology Series, Academic Press/Elsevier, San Diego

    Google Scholar 

  7. Cushing, J. M. (2004), The LPA model, Fields Institute Communications 43: 29–55

    MathSciNet  Google Scholar 

  8. Dennis, B., R. A. Desharnais, J. M. Cushing, and R. F. Costantino (1995), Nonlinear demographic dynamics: mathematical, models, statistical methods, and biological experiments, Ecological Monographs 65(3): 261–281

    Article  Google Scholar 

  9. Dennis, B., R. A. Desharnais, J. M. Cushing, S. M. Henson and R. F. Costantino (2001), Estimating chaos and complex dynamics in an insect population, Ecological Monographs 71, No. 2: 277–303

    Article  MathSciNet  Google Scholar 

  10. Dennis, B., R. A. Desharnais, J. M. Cushing, S. M. Henson, R. F. Costantino (2003), Can noise induce Chaos?, Oikos 102: 329–340

    Article  Google Scholar 

  11. Desharnais, R. A., Costantino, R. F., J. M. Cushing and B. Dennis (June 1997), Letter to editor, Science 276: 1881–1882

    Article  Google Scholar 

  12. Henson, S. M. (2000), Multiple Attractors and Resonance in Periodically Forced Population Models, Physica D: Nonlinear Phenomena 140: 33–49

    Article  MathSciNet  MATH  Google Scholar 

  13. Henson, S. M. and J. M. Cushing (1997), The effect of periodic habitat fluctuations on a nonlinear insect population model, Journal of Mathematical Biology 36: 201–22

    Article  MathSciNet  MATH  Google Scholar 

  14. Henson, S. M., J. M. Cushing, R. F. Costantino, B. Dennis and R. A. Desharnais (1998), Phase switching in biological population, Proceedings of the Royal Society 265: 2229–2234

    Article  Google Scholar 

  15. Henson, S. M., R. F. Costantino, J. M. Cushing, B. Dennis and R. A. Desharnais (1999), Multiple attractors, saddles and population dynamics in periodic habitats, Bulletin of Mathematical Biology 61: 1121–1149

    Article  Google Scholar 

  16. Henson, S. M., R. F. Costantino, J. M. Cushing, R. A. Desharnais, B. Dennis and Aaron A. King (19 Oct 2001), Lattice effects observed in chaotic dynamics of experimental populations, Science 294: 602–605

    Article  Google Scholar 

  17. Henson, S. M., R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis (2002), Basins of attraction: population dynamics with two stable 4-cycles, Oikos 98: 17–24

    Article  Google Scholar 

  18. Henson, S. M., J. R. Reilly, S. L. Robertson, M. C. Schu, E. W. Davis and J. M. Cushing (2003a), Predicting irregularities in population cycles, SIAM Journal on Applied Dynamical Systems 2, No. 2: 238–253

    Article  MathSciNet  MATH  Google Scholar 

  19. Henson, S. M., A. A. King, R. F. Costantino, J. M. Cushing, B. Dennis and R. A. Desharnais (2003b), Explaining and predicting patterns in stochastic population systems, Proceedings of the Royal Society London B 270: 1549–1553

    Article  Google Scholar 

  20. Jillson, D. (1980), Insect populations respond to fluctuating environments, Nature 288: 699–700

    Article  Google Scholar 

  21. Kendall, B. E., W. M. Schaffer and C. W. Tidd (1993), Transient periodicity in chaos, Physics Letters A. 177: 13–20

    Article  MathSciNet  Google Scholar 

  22. King, A. A., R. F. Costantino, J. M. Cushing, S. M. Henson, R. A. Desharnais and B. Dennis (2003), Anatomy of a chaotic attractor: subtle model-predicted patterns revealed in population data, Proceedings of the National Academy of Sciences 101, No. 1: 408–413

    Article  Google Scholar 

  23. Lathrop, D. P. and E. J. Kostelich (1989), Characterization of an experimental strange attractor by periodic orbits, Physics Reviews A. 40: 4028–4031

    Article  MathSciNet  Google Scholar 

  24. May, R. M. (2001), Stability and Complexity in Model Ecosystems, Princeton Landmarks in Biology, Princeton University Press, Princeton, New Jersey

    MATH  Google Scholar 

  25. Schaffer, W. M., B. E. Kendall, C. W. Tidd and J. F. Olsen (1993), Transient periodicity and episodic predictability in biological dynamics, IMA Journal of Mathematical Applications to Medicine and Biology 10: 227–247

    MATH  Google Scholar 

  26. So, P., J. T. Francis, T. I. Netoff, B. J. Gluckman, and S. J. Schiff (1998), Periodic orbits: a new language for neuronal dynamics, Biophysics Journal. 74: 2776–2785

    Article  Google Scholar 

  27. Wilson, E. O. (2002), The Future of Life, Alfred A. Knopf, New York, p.111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cushing, J.M. (2007). Nonlinearity and Stochasticity in Population Dynamics. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds) Mathematics for Ecology and Environmental Sciences. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34428-5_7

Download citation

Publish with us

Policies and ethics