Skip to main content

Part of the book series: Genome Mapping and Molecular Breeding in Plants ((GENMAPP,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananiev EV, Vales MI, Phillips RL, Rines HW (2002) Isolation of A/D and C genome specific dispersed and clustered repetitive DNA sequences from Avena sativa. Genome 45:431–441

    PubMed  CAS  Google Scholar 

  • Bahkt S, Qi X, Osbourn A (2003) Construction of a BAC library from diploid oat (Avena strigosa). In: Plant and Animal Genome XI Conf, San Diego, p 82. www.intl-pag.org

    Google Scholar 

  • Barbosa-Neto JF, Siripoonwiwat W, O’Donoughue LS, Gray SM, Smith DM, Kolb FL, Gourmet C, Brown CM, Sorrells ME (2000) Chromosomal regions associated with barley yellow dwarf resistance in oat. Euphytica 114:67–76

    Google Scholar 

  • Baum BR (1977) Oats: wild and cultivated. A monograph of the genus Avena L. (Poaceae). Monograph No. 14. Biosystematics Research Institute (currently ECORC), Agriculture and Agri-Food Canada, Ottawa, Canada

    Google Scholar 

  • Beer SC, Siripoonwiwat W, O’Donoughue LS, Souza E, Matthews D, Sorrells ME (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: Can we infer linkages? J Agri Genom 3. http://www.cabipublishing.org/jag/index.html

    Google Scholar 

  • Brautigam M, Gustavsson A, Zakhrabekova S, Olsson B, Olsson O (2004a) Molecular characterization of CBF transcription factor genes in oat. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 192. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Brautigam M, Lindlof A, Gharti-Chhetri G, Zakhrabekova S, Jonsson A, Olsson B, Olsson O (2004b) Analysis of 9703 expressed sequence tags in cold acclimated oat. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 193. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Burrows VD (2005) Hulless oats. In: Abdel-Aal E-SM, Wood P (eds) Specialty Grains for Food and Feed. American Association of Cereal Chemists, St. Paul, MN, USA, pp 223–252

    Google Scholar 

  • Burrows VD, Molnar SJ, Tinker NA, Marder T, Butler G, Lybaert A (2001) Groat yield of naked and covered oat. Can J Plant Sci 81:727–729

    Google Scholar 

  • Bush AL, Wise RP (1996) Crown rust resistance loci on linkage groups 4 and 13 in cultivated oat. J Hered 87:427–432

    CAS  Google Scholar 

  • Bush AL, Wise RP (1998) High-resolution mapping adjacent to the Pc71 crown-rust resistance locus in hexaploid oat. Mol Breed 4:13–21

    CAS  Google Scholar 

  • Bush AL, Wise RP, Rayapati PJ, Lee M (1994) Restriction fragment length polymorphisms linked to genes for resistance to crown rust (Puccinia coronata) in near isogenic lines of hexaploid oat (Avena sativa). Genome 37:823–831

    CAS  Google Scholar 

  • Campbell H, Choo TM, Vigier B, Underhill L (2000) Mycotoxins in barley and oat samples from eastern Canada. Can J Plant Sci 80:977–980

    CAS  Google Scholar 

  • Cervantes-Martinez CT, Frey KJ, White PJ, Wesenberg DM, Holland JB (2001) Selection for greater β-glucan content in oat grain. Crop Sci 41:1085–1091

    CAS  Google Scholar 

  • Chen Q, Armstrong K (1994) Genomic in situ hybridization in Avena sativa. Genome 37:607–612

    CAS  Google Scholar 

  • Chen G, Chong J, Gray M, Prashar S, Procunier JD (2004) Single nucleotide polymorphisms as next generation markers for high throughput screening for crown rust resistance in oat. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 86. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Cheng DW, Armstrong KC, Tinker N, Wight CP, He S, Lybaert A, Fedak G, Molnar SJ (2002a) Genetic and physical mapping of Lrk10-like receptor kinase sequences in hexaploid oat (Avena sativa L.). Genome 45:100–109

    PubMed  CAS  Google Scholar 

  • Cheng DW, He S, Armstrong KC (2002b) Modified expression of two receptor kinase genes in hexaploid oat (Avena sativa L.) on inoculation with crown rust. Physiol Mol Plant Pathol 61:281–288

    CAS  Google Scholar 

  • Cheng CW, Armstrong KC, Drouin G, McElroy A, Fedak G, Molnar SJ (2003) Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena. Genome 46:119–127

    PubMed  CAS  Google Scholar 

  • Cho M-J, Choi H, Okamoto D, Zhang S, Lemaux P (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep 21:467–474

    PubMed  CAS  Google Scholar 

  • Chong J, Aung T (1998) Interaction of the crown rust resistance gene Pc94 with several Pc genes. In: Proc 9th European and Mediterranean Cereal Rusts and Powdery Mildews Conf, 2–6 September 1996, Lunteren, The Netherlands. European and Mediterranean Cereal Rust Foundation, Wageningen, pp 172–175

    Google Scholar 

  • Chong J, Zegeye T (2004) Physiologic specialization of Puccinia coronata f. sp. avenae, the cause of oat crown rust, in Canada from 1999 to 2001. Can J Plant Pathol 26:97–108

    Google Scholar 

  • Chong J, Reimer E, Somers D, Aung T, Penner GA (2004) Development of sequence-characterized amplified region (SCAR) markers for resistance gene Pc94 to crown rust in oat. Can J Plant Pathol 26:89–96

    CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    PubMed  CAS  Google Scholar 

  • Crombie WML, Crombie L (1986) Distribution of avenacins A-1, A-2, B-1 and B-2 in oat Avena sativa roots: their fungicidal activity towards take-all fungus Gaeumannomyces graminis. Phytochemistry 25:2069–2074

    CAS  Google Scholar 

  • De Koeyer DL, Stuthman DD (2001) Allelic shifts and quantitative trait loci in a recurrent selection population of oat. Crop Sci 41:1228–1234

    Google Scholar 

  • De Koeyer D, Orr W, Lybaert A, Deyl J, Chenier C, Tinker N, McElroy A, Chong J, Molnar S (2000) SCAR markers linked to the Pc68 resistance allele are an effective tool for selection. In: Cross RJ (ed) Proc. 6th Int Oat Conf, Lincoln University, Lincoln, NZ, 13–16 Nov 2000, New Zealand Institute for Crop and Food Research, Christchurch, New Zealand. ISBN 0-478-10820-6: http://wheat.pw.usda.gov/ggpages/Oats/IOC6.html

    Google Scholar 

  • De Koeyer DL, Tinker NA, Wight CP, Deyl J, Burrows VD, O’Donoughue LS, Lybaert A, Molnar SJ, Armstrong KC, Fedak G, Wesenberg DM, Rossnagel BG, McElroy AR (2004) A molecular linkage map with associated QTL from a hulless x covered spring oat population. Theor Appl Genet 108:1285–1298

    PubMed  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    PubMed  CAS  Google Scholar 

  • Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLPmolecular markers. Theor Appl Genet 109:48–54

    PubMed  CAS  Google Scholar 

  • Eckstein P, Kibite S, Menzies J, Hay D, Rossnagel BG, Scoles GJ (2002) Dominant and co-dominant SCAR markers for a gene conferring loose smut resistance in oat. Poster Abstr, Am Oat Workers Conf, 5–7 May 2002, Wilmington, NC, p 33. In: Hoffman D (ed) Oat Newslett 48 (2002). http://wheat/pw.usda.gov/ggpages/oatnewsletter/v48/AOWC_Abstracts.htm

    Google Scholar 

  • Fetch TG, Jr, Dunsmore KM (2004) Physiologic specialization of Puccinia graminis on wheat, barley, and oat in Canada in 2001. Can J Plant Pathol 26:148–155

    Google Scholar 

  • Fominaya A, Vega C, Ferrer E (1988) Giemsa C-banded karyotypes of Avena species. Genome 30:627–632

    Google Scholar 

  • Fominaya A, Hueros G, Loarce Y, Ferrer E (1995) Chromosomal distribution of a repeated DNA sequence from C-genome heterochromatin and the identification of a new ribosomal DNA locus in the Avena genus. Genome 38:548–557

    PubMed  CAS  Google Scholar 

  • Fox SL, Jellen EN, Kianian SF, Rines HW, Phillips RL (2001) Assignment of RFLP linkage groups to chromosomes using monosomic F1 analysis in hexaploid oat. Theor Appl Genet 102:320–326

    CAS  Google Scholar 

  • Groh S, Kianian SF, Phillips RL, Rines HW, Stuthman DD, Wesenberg DM, Fulcher RG (2001a) Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet 103:9–18

    CAS  Google Scholar 

  • Groh S, Zacharias A, Kianian SF, Penner GA, Chong J, Rines HW, Phillips RL (2001b) Comparative AFLP mapping in two hexaploid oat populations. Theor Appl Genet 102:876–884

    CAS  Google Scholar 

  • Harder DE, Haber S (1992) Oat diseases and pathologic techniques. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology, Agron Monogr 33. ASA and CSSA, Madison, WI, pp 307–425

    Google Scholar 

  • Hayasaki M, Morikawa T, Tarumoto I (2000) Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization. Genes Genet Syst 75:167–171

    PubMed  CAS  Google Scholar 

  • Holland JB (1997) Oat improvement. In: Kang MS (ed) Crop Improvement for the 21st Century. Research Signpost, Trivandrum, India, pp 57–98

    Google Scholar 

  • Holland JB, Moser HS, O’Donoughue LS, Lee M (1997) QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37:1306–1316

    Google Scholar 

  • Holland JB, Frey KJ, Hammond EG (2001a) Correlated responses of fatty acid composition, grain quality, and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 122:69–79

    CAS  Google Scholar 

  • Holland JB, Helland SJ, Sharopova N, Rhyne DC (2001b) Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44:1065–1076

    PubMed  CAS  Google Scholar 

  • Holland JB, Portyanko VA, Hoffman DA, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105:113–126

    PubMed  CAS  Google Scholar 

  • Howarth C, Langdon T, Cowan A, Leggett M, Valentine J (2004) Development and use of markers for oil in oats. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 71. http://www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Irigoyen ML, Loarce Y, Linares C, Ferrer E, Leggett M, Fominaya A (2001) Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena. Theor Appl Genet 103:1160–1166

    CAS  Google Scholar 

  • Irigoyen ML, Linares C, Ferrer E, Fominaya A (2002) Fluorescence in situ hybridization of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences. Genome 45:1230–1237

    PubMed  CAS  Google Scholar 

  • Irigoyen ML, Loarce Y, Fominaya A, Ferrer E (2004) Isolation and mapping of resistance gene analogs from the Avena strigosa genome. Theor Appl Genet 109:713–724

    PubMed  CAS  Google Scholar 

  • Jellen EN, Phillips RL, Rines HW (1993a) C-banded karyotypes and polymorphisms in hexaploid oat accessions (Avena spp.) using Wright’s stain. Genome 37:1129–1137

    Google Scholar 

  • Jellen EN, Rooney WL, Phillips RL, Rines HW (1993b) Characterization of the hexaploid oat Avena byzantina cv. Kanota monosomic series using C-banding and RFLPs. Genome 36:962–970

    CAS  Google Scholar 

  • Jellen EN, Gill BS, Cox TS (1994) Genomic in situ hybridization differentiates between A/D-and C-genome chromatin and detects intergenomic translocations in polyploidy oat species (genus Avena). Genome 37:613–618

    CAS  Google Scholar 

  • Jin H, Domier LL, Kolb FL, Brown CM (1998) Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–415

    CAS  Google Scholar 

  • Jin H, Domier LL, Kolb FL, Brown CM (1999) Conversion of AFLP markers associated with BYDV tolerance in oats to non-radioactive PCR markers. In: Plant and Animal Genome VII Conf, San Diego, p 396. www.intl-pag.org

    Google Scholar 

  • Jin H, Domier LL, Shen X, Kolb FL (2000) Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations. Genome 43:94–101

    PubMed  CAS  Google Scholar 

  • Jonsson R, Gharti-Chhetri G, Brautigam M, Jonsson A, Olsson O (2004) Development of a Scandinavian winter oat by molecular breeding and tissue culture techniques. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 190. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Katsiotis A, Loukas M, Heslop-Harrison JS (2000) Repetitive DNA, genome and species relationships in Avena and Arrhenatherum (Poaceae). Ann Bot 86:1135–1142

    CAS  Google Scholar 

  • Kianian SF, Wu B-C, Fox SL, Rines HW, Phillips RL (1997) Aneuploid marker assignment in hexaploid oat with the C genome as a reference for determining remnant homoeology. Genome 40:386–396

    PubMed  CAS  Google Scholar 

  • Kianian SF, Egli MA, Phillips RL, Rines HW, Somers DA, Gengenbach BG, Webster FH, Livingston SM, Groh S, O’-Donoughue LS, Sorrells ME, Wesenberg DM, Stuthman DD, Fulcher RG (1999) Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor Appl Genet 98:884–894

    CAS  Google Scholar 

  • Kianian SF, Phillips RL, Rines HW, Fulcher RG, Webster FH, Stuthman DD (2000) Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet 101:1049–1055

    Google Scholar 

  • Kianian SF, Fox SL, Groh S, Tinker N, O’Donoughue LS, Rayapati PJ, Wise RP, Lee M, Sorrells ME, Fedak G, Molnar SJ, Rines HW, Phillips RL (2001) Molecular marker linkage maps in diploid and hexaploid oat (Avena sp.). In: Phillips RL, Vasil IK (eds)DNA-Based Markers in Plants. Kluwer, Dordrecht, pp 443–462

    Google Scholar 

  • Kibite S, Menzies J, Thomas PL (2000) Inheritance of resistance to three pathotypes of loose and covered smut of oats. In: Cross RJ (ed) Proc 6th Int Oat Conf, Lincoln, NZ, pp 298–301. http://wheat.pw.usda.gov/ggpages/Oats/IOC6.html

    Google Scholar 

  • Kibite S, Rossnagel B, Eckstein P, Hay D, Menzies J, Dill-Mackay R, Scoles G (2004) A molecular marker for, and the organization of, a cluster of loose smut resistance genes in oat. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 183. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Kiviharju E, Manninen O, Pietila L, Tanhuanpaa P (2004) DNA marker for oat dwarfing gene. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 171. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Kremer CA, Lee M, Holland JB (2001) A restriction fragment length polymorphism based linkage map of a diploid Avena recombinant inbred line population. Genome 44:192–204

    PubMed  CAS  Google Scholar 

  • Kynast RG, Okagaki RJ, Galatowitsch MW, Granath SR, Jacobs MS, Stec AO, Rines HW, Phillips RL (2004) Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci USA 101:9921–9926

    PubMed  CAS  Google Scholar 

  • Ladizinsky G (1988) The domestication and history of oats. In: Mattson B, Lyhagen R (eds) Proc 3rd Int Oat Conf, Svalof AB, Lund, Sweden, pp 7–12

    Google Scholar 

  • Ladizinsky G (1998) A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet Resource Crop Evol 45:263–269

    Google Scholar 

  • Ladizinsky G, Zohary D (1971) Notes on species delineation, species relationships and polyploidy in Avena L. Euphytica 20:380–395

    Google Scholar 

  • Leggett JM (1992) Classification and speciation in Avena. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology, Agron Monogr 33. ASA and CSSA, Madison, WI, pp 29–52

    Google Scholar 

  • Leggett JM, Markhand GS (1995) The genomic identification of some monosomics of Avena sativa L. cv. Sun II using genomic in situ hybridization. Genome 38:747–751

    CAS  Google Scholar 

  • Leggett JM, Thomas H (1995) Oat evolution and cytogenetics. In: Welch RW (ed) The Oat Crop: Production and Utilization. Chapman and Hall, London, pp 120–149

    Google Scholar 

  • Li C-D, Rossnagel BG, Scoles GJ (2000a) The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268

    CAS  Google Scholar 

  • Li C-D, Rossnagel BG, Scoles GJ (2000b) Tracing the phylogeny of the hexaploid oat Avena sativa with satellite DNAs. Crop Sci 40:1755–1763

    CAS  Google Scholar 

  • Linares C, Ferrer E, Fominaya A (1998) Discrimination of the closely related A and D genomes of the hexaploid oat Avena sativa L. Proc Natl Acad Sci USA 95:12450–12455

    PubMed  CAS  Google Scholar 

  • Linares C, Irigoyan ML, Fominaya A (2000) Identification of C-genome chromosomes involved in intergenomic translocations in Avena sativa L., using cloned repetitive DNA sequences. Theor Appl Genet 100:353–360

    CAS  Google Scholar 

  • Malone G, Marchioro V, Kopp MM, Malone E, Maia LC, Zimmer PD, de Carvalho IF, de Oliveira AC (2004) Finding AFLP markers associated to panicle weight through bulk segregant analysis. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 163. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Marshall HG, Shaner GE (1992) Genetics and inheritance in oat. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology, Agron Monogr 33. ASA and CSSA, Madison, WI, pp 510–571

    Google Scholar 

  • Marshall HG, Sorrells ME (1992) Oat Science and Technology, Agron Monogr 33. ASA and CSSA, Madison, WI

    Google Scholar 

  • McCallum BD, Harder DE, Dunsmore KM (2000) Stem rusts on wheat, barley, and oat in Canada in 1999. Can J Plant Pathol 22:23–28

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  CAS  Google Scholar 

  • Milach SCK, Rines HW, Phillips RL (1997) Molecular genetic mapping of dwarfing genes in oat. Theor Appl Genet 95:783–790

    CAS  Google Scholar 

  • Molnar S, Orr W, Lybaert A, Tinker N, Cheng D, Smith A, Armstrong K, De Koeyer D (2000) Development of PCR based markers for molecular marker assisted breeding. In: 6th Int Oat Conf, Lincoln University, Lincoln, NZ, pp 153–156. http://wheat.pw.usda.gov/ggpages/Oats/IOC6.html

    Google Scholar 

  • Molnar SJ, Tinker N, De Koeyer D, Orr W, Lybaert A, Yan W, Mather D, Wight C, McElroy A (2004) Genomic investigation of oat quality. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 51. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: Grasses, line up and form a circle. Curr Biol 5:737–739

    PubMed  CAS  Google Scholar 

  • Morikawa T (1975) Identification of the 21 monosomic lines in Avena byzantina C. Koch cv. ‘Kanota.’ Theor Appl Genet 70:271–278

    Google Scholar 

  • Murai H, Tsunewaki K (1987) Chloroplast genome evolution in the genus Avena. Genetics 116:613–621

    CAS  Google Scholar 

  • Murphy JP, Hoffman LA (1992) The origin, history, and production of oat. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology, Agron Monogr 33. ASA and CSSA, Madison, WI, pp 1–28

    Google Scholar 

  • Nocelli E, Giovannini T, Bioni M, Alicchio R (1999) RFLP-and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome 42:950–959

    PubMed  CAS  Google Scholar 

  • Nuutila AM, Lehto K, Oksman-Caldentey K-M (2004) Transgenic oat for improved BYDV resistance. In:Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 88. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • O’Donoughue LS, Wang Z, Röder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1992) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica x A. hirtula). Genome 35:765–771

    CAS  Google Scholar 

  • O’Donoughue LS, Rayapati PJ, Kianian SF, Sorrells ME, Tanksley SD, Lee M, Rines HW, Phillips RL (1994) Development of RFLP-based linkage maps in diploid and hexaploid oat (Avena sp.) In: Phillips RL, Vasil IK (eds) DNA-Based Markers in Plants. Kluwer, Dordrecht, pp 359–374

    Google Scholar 

  • O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL, Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, Van Deynze A (1995) A molecular linkage map of cultivated oat. Genome 38:368–380

    CAS  Google Scholar 

  • O’Donoughue LS, Chong J, Wight CP, Fedak G, Molnar SJ (1996) Localization of stem rust resistance genes and associated molecular markers in cultivated oat. Phytopathology 86:719–727

    CAS  Google Scholar 

  • Orr W, Molnar SJ (2002) Development and mapping of PCR based SCAR markers linked to oil QTL in oat (Avena sativa L.). Poster Abstr Am Oat Workers Conf, 5–7 May 2002, Wilmington, NC, p 41. In: Hoffman D (ed) Oat Newslett 48 (2002). http://wheat.pw.usda.gov/ggpages/oatnewsletter/v48/AOWC_Abstracts.htm

    Google Scholar 

  • Orr W, De Koeyer D, Chenier C, Tinker N, Molnar SJ (1998) SCAR markers for rust resistance genes Pc68, Pg3 and Pg9 designed for marker assisted selection in oats. Poster Abstr Am Oat Workers Conf. In: Chong J (ed) Oat Newslett 44 (1998):32. http://wheat.pw.usda.gov/ggpages/oatnewsletter/Poster_abstracts.html

    Google Scholar 

  • Orr WM, De Koeyer D, Chenier C, Tinker NA, Molnar SJ (1999) SCAR markers for oat rust resistance genes (Pc68, Pg3, Pg9) designed for marker assisted selection. In: Plant and Animal Genome VII Conf, San Diego, p 395. www.intlpag.org

    Google Scholar 

  • Pal N, Sandhu JS, Domier LL, Kolb FL (2002) Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci 42:912–918

    CAS  Google Scholar 

  • Penner GA, Bush A, Wise R, Kim W, Dormier L, Kasha K, Laroche A, Scoles G, Molnar SJ, Fedak G (1993a) Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl 2:341–345

    PubMed  CAS  Google Scholar 

  • Penner GA, Chong J, Levesque-Lemay M, Molnar SJ, Fedak G (1993b) Identification of a RAPD marker linked to the oat stem rust gene Pg3. Theor Appl Genet 85:702–705

    CAS  Google Scholar 

  • Penner GA, Chong J, Wight CP, Molnar SJ, Fedak G (1993c) Identification of an RAPD marker for the crown rust resistance gene Pc68 in oats. Genome 36:818–820

    CAS  Google Scholar 

  • Perrer SP, Valentine J, Leggett MJ, Morris P (2003) Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). J Plant Physiol 160:931–943

    Google Scholar 

  • Peterson DM (1992) Composition and nutritional characteristics of oat grain and products. In: Marshall HG, Sorrells ME (eds) Oat Science and Technology, Agron Monogr 33. ASA and CSSA, Madison, WI, USA, pp 265–292

    Google Scholar 

  • Peterson DM (2004) Oat — a multifunctional grain. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Intl Oat Conf, Helsinki, Finland, pp 21–26. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Portyanko VA, Hoffman DL, Lee M, Holland JB (2001) A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 44:249–265

    PubMed  CAS  Google Scholar 

  • Portyanko VA, Chen G, Rines HW, Phillips RL, Leonard KJ, Ochocki GE, Stuthman DD (2005) Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L. Theor Appl Genet 111:313–324

    PubMed  CAS  Google Scholar 

  • Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A (2004) A gene cluster for secondary metabolismin oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci USA 101:8233–8238

    PubMed  CAS  Google Scholar 

  • Rajhathy T, Thomas H (1974) Cytogenetics of oats (Avena L.). Miscellaneous publication of the Genetics Society of Canada No.2. Genetics Society of Canada, Ottawa, Ontario

    Google Scholar 

  • Rayapati PJ, Gregory JW, Lee M, Wise RP (1994) A linkage map of diploid Avena based on RFLP loci and a locus conferring resistance to nine isolates of Puccinia coronata var. avenae. Theor Appl Genet 89:831–837

    CAS  Google Scholar 

  • Rines HW, Phillips RL, Anderson OD, Vance CP, Crossman CC, Lazo GR, Miller SS, Taller JM (2004) ESTs, cytogenetic stocks, and other tools for oat genomics. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 69. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Ronald, PS, Penner GA, Brown PD, Brule-Babel A (1997) Identification of RAPD markers for percent hull in oat. Genome 40:873–878

    CAS  Google Scholar 

  • Rooney WL, Jellen EN, Phillips RL, Rines HW, Kianian SF (1994a) Identification of homoeologous chromosomes in hexaploid oat (A. byzantina cv. Kanota) using monosomics and RFLP analysis. Theor Appl Genet 89:329–335

    CAS  Google Scholar 

  • Rooney WL, Rines HW, Phillips RL (1994b) Identification of RFLP markers linked to crown rust resistance genes Pc91 and Pc92 in oat. Crop Sci 34:940–944

    Google Scholar 

  • Rossnagel B, Eckstein P, Williams S, Arganosa G, Kibite S, Scoles G (2004a) Low acid detergent lignin oat hull: molecular marker development and chromosome location. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 153.www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Rossnagel B, Zatorski T, Racz V, McKinnon J, Christensen D (2004b) Better feed for cattle. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 54. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Satheeskumar S, Chapados J, Deyl J, Molnar S, McElroy A (2002) Genetic association of crown rust gene Pc59 and AFLP markers in oats. Poster Abstr Am Oat Workers Conf, 5–7 May 2002, Wilmington, NC, p 44. In: Hoffman D (ed) Oat Newslett 48 (2002). http://wheat.pw.usda.gov/ggpages/oatnewsletter/v48/AOWC_Abstracts.htm

    Google Scholar 

  • Scoles G, Eckstein P (2004) The applications of biotechnology to disease resistance breeding in oat. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, pp 77–84. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Simons MD, Martens JW, McKenzie RIH, Nishiyama I, Sadanaga K, Sebesta J, Thomas H (1978) Oats: a standardized system of nomenclature for genes and chromosomes and catalog of genes covering characters. Agriculture Handbook Number 509, issued April 1978 by United States Department of Agriculture (in cooperation with Iowa Agriculture and Home Economics Experiment Station), prepared by Science and Education Administration, for sale by Superintendent of Documents, US Government Printing Office, Washington, DC

    Google Scholar 

  • Siripoonwiwat W, O’Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J Agric Genom 2. http://www.cabi-publishing.org/gateways/jag/index.html

    Google Scholar 

  • Somers DA (1999) Transgenic cereals: Avena sativa (oat). In: Vasil IK (ed) Advances in Cellular and Molecular Biology of Plants, vol. 5. Molecular Improvement of Cereal Crops. Kluwer, Dordrecht, pp 317–339

    Google Scholar 

  • Start MA (2000) RFLP association to chromosome using an oat aneuploid series. MS thesis, University of Minnesota, St Paul, MN

    Google Scholar 

  • Steer MW (1975) Evolution in the genus Avena: Inheritance of different forms of ribulose diphosphate carboxylase. Can J Genet Cytol 17:337–344

    CAS  Google Scholar 

  • Stuthman DD (1995) Oat breeding and genetics. In:Welch RW (ed) The Oat Crop: Production and Utilization. Chapman and Hall, London, pp 150–176

    Google Scholar 

  • Symons SJ, Fulcher RG (1988) Determination of variation in oat kernel morphology by digital image analysis. J Cereal Sci 7:219–228

    Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Google Scholar 

  • Thompson RK, Mustafa AF, McKinnon JJ, Maenz D, Rossnagel B (2000) Genotypic differences in chemical composition and ruminal digestability of oat hulls. Can J Animal Sci 80:377–379

    Google Scholar 

  • Valentine J, Cowan S (2004) New directions in breeding for high quality oats. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Intl Oat Conf, Helsinki, Finland, pp 45–50: www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Van Deynze AE, Nelson JC, O’Donoughue LS, Ahn SN, Siripoonwiwat W, Harrington SE, Yglesias ES, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Oat relationships. Mol Gen Genet 249:349–356

    PubMed  Google Scholar 

  • Van Deynze A, Sorrells ME, Park WD, Ayres NM, Fu H, Catinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping of grass genera. Theor Appl Genet 97:356–369

    Google Scholar 

  • Welch RW (1995) The Oat Crop: Production and Utilization. Chapman and Hall, London

    Google Scholar 

  • Wight CP, Penner GA, O’Donoughue LS, Burrows VD, Molnar SJ, Fedak G (1994) The identification of random amplified polymorphic DNA (RAPD) markers for daylength sensitivity in oat. Genome 37:910–914

    CAS  Google Scholar 

  • Wight CP, Tinker NA, Kianian SF, Sorrells ME, O’Donoughue LS, Hoffman DL, Groh S, Scoles GJ, Li CD, Webster FH, Phillips RL, Rines HW, Livingston SM, Armstrong KC, Fedak G, Molnar SJ (2003) A molecular marker map in Kanota × Ogle hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. Genome 46:28–47

    PubMed  CAS  Google Scholar 

  • Wight CP, O’Donoughue LS, Chong J, Tinker NA, Molnar SJ (2004) Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance gene Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Mol Breed 14:349–361

    CAS  Google Scholar 

  • Williams K, Willsmore K, Hoppo S, Eckermann P, Zwer P (2004) Mapping of quantitative trait loci for yield, quality and disease resistance. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 71. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Wilson WF, McMullen MS (1997) Dosage dependent genetic suppression of oat crown rust resistance gene Pc62. Crop Sci 37:1699–1705

    CAS  Google Scholar 

  • Wise RP, Lee M, Rayapati PJ (1996) Recombination within a 5-centimorgan region in diploid Avena reveals multiple specificities conferring resistance to Puccinia coronata. Phytopathology 86:340–346

    CAS  Google Scholar 

  • Yu G-X, Wise RP (2000) An anchored AFLP-and retrotransposon-based map of diploid Avena. Genome 43:736–749

    PubMed  CAS  Google Scholar 

  • Yu J, Beuch S, Herrmann M, Hackauf B (2004) AB-QTL analysis for β-glucan content in oats. In: Peltonen-Saino P, Topi-Hulmi M (eds) Proc 7th Int Oat Conf, Helsinki, Finland, p 71. www.mtt.fi/met/pdf/met51.pdf

    Google Scholar 

  • Zhu S, Kaeppler HF (2003a) A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross ‘Ogle/MAM17-5’. Theor Appl Genet 107:26–35

    PubMed  CAS  Google Scholar 

  • Zhu S, Kaeppler HF (2003b) Identification of quantitative trait loci for resistance to crown rust in oat line MAM17-5. Crop Sci 43:358–366

    CAS  Google Scholar 

  • Zhu S, Kolb FL, Kaeppler HF (2003a) Molecular mapping of genomic regions underlying barley yellow dwarf tolerance in cultivated oat (Avena sativa L.). Theor Appl Genet 106:1300–1306

    PubMed  CAS  Google Scholar 

  • Zhu S, Leonard KJ, Kaeppler HF (2003b) Quantitative trait loci associated with seedling resistance to isolates of Puccinia coronata in oat. Phytopathology 93:860–866

    Google Scholar 

  • Zhu S, Rossnagel BG, Kaeppler HF (2004) Genetic analysis of quantitative trait loci for groat protein and oil content in oat. Crop Sci 44:254–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rines, H.W., Molnar, S.J., Tinker, N.A., Phillips, R.L. (2006). Oat. In: Kole, C. (eds) Cereals and Millets. Genome Mapping and Molecular Breeding in Plants, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34389-9_5

Download citation

Publish with us

Policies and ethics