Endothelial Cell- and Lymphocyte-Based In Vitro Systems for Understanding KSHV Biology

  • S. C. McAllister
  • A. V. Moses
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 312)


Kaposi sarcoma (KS), the most common AIDS-associated malignancy, is amultifocal tumor characterized by deregulated angiogenesis, proliferation of spindle cells, and extravasation of inflammatory cells and erythrocytes. Kaposi sarcoma-associated herpesvirus (KSHV; also human herpesvirus-8) is implicated in all clinical forms of KS. Endothelial cells (EC) harbor the KSHV genome in vivo, are permissive for virus infection in vitro, and are thought to be the precursors of KS spindle cells. Spindle cells are rare in early patch-stage KS lesions but become the predominant cell type in later plaque- and nodular-stage lesions. Alterations in endothelial/spindle cell physiology that promote proliferation and survival are thus thought to be important in disease progression and may represent potential therapeutic targets. KSHV encodes genes that stimulate cellular proliferation and migration, prevent apoptosis, and counter the host immune response. The combined effect of these genes is thought to drive the proliferation and survival of infected spindle cells and influence the lesional microenvironment. Large-scale gene expression analyses have revealed that KSHV infection also induces dramatic reprogramming of the EC transcriptome. These changes in cellular gene expression likely contribute to the development of the KS lesion. In addition to KS, KSHV is also present in B cell neoplasias including primary effusion lymphoma and multicentric Castleman disease. A combination of virus and virus-induced host factors are similarly thought to contribute to establishment and progression of these malignancies. A number of lymphocyte- and EC-based systems have been developed that afford some insight into the means by which KSHV contributes to malignant transformation of host cells. Whereas KSHV is well maintained in PEL cells cultured in vitro, explanted spindle cells rapidly lose the viral episome. Thus, endothelial cell-based systems for studying KSHV gene expression and function, as well as the effect of infection on host cell physiology, have required in vitro infection of primary or life-extended EC. This chapter includes a review of these in vitro cell culture systems, acknowledging their strengths and weaknesses and putting into perspective how each has contributed to our understanding of the complex KS lesional environment. In addition, we present a model of KS lesion progression based on findings culled from these models as well as recent clinical advances in KS chemotherapy. Thus this unifying model describes our current understanding of KS pathogenesis by drawing together multiple theories of KS progression that by themselves cannot account for the complexities of tumor development.


Spindle Cell Primary Effusion Lymphoma Lytic Replication Lytic Gene KSHV Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1997) Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. Lyon, France, 17–24 June 1997. IARCMonogr Eval Carcinog Risks Hum 70:1–492Google Scholar
  2. Aluigi MG, Albini A, Carlone S, Repetto L, De Marchi R, Icardi A, Moro M, Noonan D, Benelli R (1996) KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi’s sarcoma. Res Virol 147(5):267–75PubMedCrossRefGoogle Scholar
  3. Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, McDonald AR, Lennette ET, Levy JA (1995) Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science 268(5210):582–3PubMedGoogle Scholar
  4. Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM, Cesarman E (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88(7):2648–54PubMedGoogle Scholar
  5. Ascherl G, Hohenadl C, Monini P, Zietz C, Browning PJ, Ensoli B, Sturzl M (1999) Expression of human herpesvirus-8 (HHV-8) encoded pathogenic genes in Kaposi’s sarcoma (KS) primary lesions. Adv Enzyme Regul 39:331–9PubMedCrossRefGoogle Scholar
  6. Ballestas ME, Kaye KM (2001) Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TRDNA. J Virol 75(7):3250–8PubMedCrossRefGoogle Scholar
  7. Bechtel JT, Liang Y, Hvidding J, Ganem D (2003) Host range of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 77(11):6474–81PubMedCrossRefGoogle Scholar
  8. Beckstead JH, Wood GS, Fletcher V (1985) Evidence for the origin of Kaposi’s sarcoma from lymphatic endothelium. Am J Pathol 119(2):294–300PubMedGoogle Scholar
  9. Benelli R, Albini A, Parravicini C, Carlone S, Repetto L, Tambussi G, Lazzarin A (1996) Isolation of spindle-shaped cell populations from primary cultures of Kaposi’s sarcoma of different stage. Cancer Lett 100(1–2):125–32PubMedCrossRefGoogle Scholar
  10. Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, Weinstein M, Glogau RG, Witte MH, Way DL, Kutzkey T, Herndier B, Levy JA (2000) The restricted cellular host range of human herpesvirus 8. AIDS 14(9):1123–33PubMedCrossRefGoogle Scholar
  11. Blauvelt A (1999) The role of human herpesvirus 8 in the pathogenesis of Kaposi’s sarcoma. Adv Dermatol 14:167–206; discussion 207PubMedGoogle Scholar
  12. Boshoff C, Gao S-J, Healy LE, Matthews S, Thomas AJ, Coignet L, Warnke RA, Strauchen JA, Matutes E, Karnel OW, Moore PS, Weiss RA, Chang Y (1998) Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in nod/SCID mice. Blood 91(5):1671–1679PubMedGoogle Scholar
  13. Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee JO, Weiss RA, O’Leary JJ (1995) Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1(12):1274–8PubMedCrossRefGoogle Scholar
  14. Brousset P, Cesarman E, Meggetto F, Lamant L, Delsol G (2001) Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi’s sarcoma and lymphoid cells of multicentric Castleman’s disease. Hum Pathol 32(1):95–100PubMedCrossRefGoogle Scholar
  15. Bubman D, Cesarman E (2003) Pathogenesis of Kaposi’s sarcoma. Hematol Oncol Clin North Am 17(3):717–45PubMedCrossRefGoogle Scholar
  16. Cannon J, Hamzeh F, Moore S, Nicholas J, Ambinder R (1999) Human herpesvirus 8-encoded thymidine kinase and phosphotransferase homologues confer sensitivity to ganciclovir. J Virol 73:4786–4793PubMedGoogle Scholar
  17. Cannon JS, Ciufo D, Hawkins AL, Griffin CA, Borowitz MJ, Hayward GS, Ambinder RF (2000) A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi’s sarcoma herpesvirus-containing supernatant. JVirol 74(21):10187–93CrossRefGoogle Scholar
  18. Carbone A, Gloghini A, Vaccher E, Zagonel V, Pastore C, Dalla Palma P, Branz F, Saglio G, Volpe R, Tirelli U, Gaidano G (1996) Kaposi’s sarcoma-associated herpesvirus DNA sequences in AIDS-related and AIDS-unrelated lymphomatous effusions. Br J Haematol 94(3):533–43PubMedCrossRefGoogle Scholar
  19. Carroll PA, Brazeau E, Lagunoff M (2004) Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology 328(1):7–18PubMedCrossRefGoogle Scholar
  20. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas [see comments]. N Engl J Med 332(18):1186–91PubMedCrossRefGoogle Scholar
  21. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM (1996) Kaposi’s sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 149(1):53–7PubMedGoogle Scholar
  22. Chang J, Renne R, Dittmer D, Ganem D (2000) Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 266(1):17–25PubMedCrossRefGoogle Scholar
  23. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma [see comments]. Science 266(5192):1865–9PubMedCrossRefGoogle Scholar
  24. Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden K, Paterson H, Weiss RA, Mittnacht S (1996) Cyclin encoded by KS herpesvirus [letter]. Nature 382(6590):410PubMedCrossRefGoogle Scholar
  25. Cheung TW (2004a) AIDS-related cancer in the era of highly active antiretroviral therapy (HAART): a model of the interplay of the immune system, virus, and cancer. “On the offensive — the Trojan Horse is being destroyed” — Part A: Kaposi’s sarcoma. Cancer Invest 22(5):774–86PubMedCrossRefGoogle Scholar
  26. Cheung TW (2004b) AIDS-related cancer in the era of highly active antiretroviral therapy (HAART): a model of the interplay of the immune system, virus, and cancer. “On the offensive — the Trojan Horse is being destroyed” — Part B: Malignant lymphoma. Cancer Invest 22(5):787–98PubMedCrossRefGoogle Scholar
  27. Child ES, Mann DJ (2001) Novel properties of the cyclin encoded by human herpesvirus 8 that facilitate exit from quiescence. Oncogene 20(26):3311–22PubMedCrossRefGoogle Scholar
  28. Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001) Spindle cell conversion by Kaposi’s sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 75(12):5614–26PubMedCrossRefGoogle Scholar
  29. Cornelissen M, Van Der Kuyl AC, Van Den Burg R, Zorgdrager F, Van Noesel CJ, Goudsmit J (2003) Gene expression profile of AIDS-related Kaposi’s sarcoma. BMC Cancer 3(1):7PubMedCrossRefGoogle Scholar
  30. Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, Tosato G, Blauvelt A, Yarchoan R (2001) Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97(10):3244–50PubMedCrossRefGoogle Scholar
  31. Davis MA, Sturzl MA, Blasig C, Schreier A, Guo HG, Reitz M, Opalenik SR, Browning PJ (1997) Expression of human herpesvirus 8-encoded cyclin D in Kaposi’s sarcoma spindle cells. J Natl Cancer Inst 89(24):1868–74PubMedCrossRefGoogle Scholar
  32. Direkze S, Laman H (2004) Regulation of growth signalling and cell cycle by Kaposi’s sarcoma-associated herpesvirus genes. Int J Exp Pathol 85(6):305–19PubMedCrossRefGoogle Scholar
  33. Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190(7):1025–32PubMedCrossRefGoogle Scholar
  34. Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM (2003) Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 67(2):175–212, table of contentsPubMedCrossRefGoogle Scholar
  35. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, Van Marck E, Salmon D, Gorin I, Escande J-P, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96(8):4546–4551PubMedCrossRefGoogle Scholar
  36. Engels EA, Biggar RJ, Marshall VA, Walters MA, Gamache CJ, Whitby D, Goedert JJ (2003) Detection and quantification of Kaposi’s sarcoma-associated herpesvirus to predict AIDS-associated Kaposi’s sarcoma. AIDS 17(12):1847–51PubMedCrossRefGoogle Scholar
  37. Fakhari FD, Dittmer DP (2002) Charting latency transcripts in Kaposi’s sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J Virol 76(12):6213–23PubMedCrossRefGoogle Scholar
  38. Fickenscher H, Fleckenstein B (2001) Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci 356(1408):545–67PubMedCrossRefGoogle Scholar
  39. Flaitz CM, Nichols CM, Hicks MJ (1996) Herpesviridae-associated persistent mucocutaneous ulcers in acquired immunodeficiency syndrome. A clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 81(4):433–41PubMedCrossRefGoogle Scholar
  40. Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E (1998) Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394(6693):588–92PubMedCrossRefGoogle Scholar
  41. Friborg J, Jr., Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402(6764):889–94PubMedGoogle Scholar
  42. Friedman-Kien AE, Laubenstein LJ, Rubinstein P, Buimovici-Klein E, Marmor M, Stahl R, Spigland I, Kim KS, Zolla-Pazner S (1982) Disseminated Kaposi’s sarcoma in homosexual men. Ann Intern Med 96(6 Pt 1):693–700PubMedGoogle Scholar
  43. Gaidano G, Cechova K, Chang Y, Moore PS, Knowles DM, Dalla-Favera R (1996) Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions. Leukemia 10(7):1237–40PubMedGoogle Scholar
  44. Gill PS, Tsai YC, Rao AP, Spruck CH, 3rd, Zheng T, Harrington WA, Jr., Cheung T, Nathwani B, Jones PA (1998) Evidence for multiclonality in multicentric Kaposi’s sarcoma. Proc Natl Acad Sci USA 95(14):8257–61PubMedCrossRefGoogle Scholar
  45. Glaunsinger B, Ganem D (2004) Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J Exp Med 200(3):391–8PubMedCrossRefGoogle Scholar
  46. Glesby MJ, Hoover DR, Weng S, Graham NM, Phair JP, Detels R, Ho M, Saah AJ (1996) Use of antiherpes drugs and the risk of Kaposi’s sarcoma: data from the Multicenter AIDS Cohort Study. J Infect Dis 173(6):1477–80PubMedGoogle Scholar
  47. Godden-Kent D, Talbot SJ, Boshoff C, Chang Y, Moore P, Weiss RA, Mittnacht S (1997) The cyclin encoded by Kaposi’s sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71(6):4193–8PubMedGoogle Scholar
  48. Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005) Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105(6):2510–8PubMedCrossRefGoogle Scholar
  49. Guo HG, Browning P, Nicholas J, Hayward GS, Tschachler E, Jiang YW, Sadowska M, Raffeld M, Colombini S, Gallo RC, Reitz MS, Jr. (1997) Characterization of a chemokine receptor-related gene in human herpesvirus 8 and its expression in Kaposi’s sarcoma. Virology 228(2):371–8PubMedCrossRefGoogle Scholar
  50. Haque M, Davis DA, Wang V, Widmer I, Yarchoan R (2003) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 77(12):6761–8PubMedCrossRefGoogle Scholar
  51. Harrington W, Jr., Sieczkowski L, Sosa C, Chan-a-Sue S, Cai JP, Cabral L, Wood C (1997) Activation of HHV-8 by HIV-1 tat. Lancet 349(9054):774–5PubMedGoogle Scholar
  52. Hayward GS (2003) Initiation of angiogenic Kaposi’s sarcoma lesions. Cancer Cell 3(1):1–3PubMedCrossRefGoogle Scholar
  53. Herndier B, Ganem D (2001) The biology of Kaposi’s sarcoma. Cancer Treat Res 104:89–126PubMedGoogle Scholar
  54. Herndier BG, Werner A, Arnstein P, Abbey NW, Demartis F, Cohen RL, Shuman MA, Levy JA (1994) Characterization of a human Kaposi’s sarcoma cell line that induces angiogenic tumors in animals. AIDS 8(5):575–81PubMedGoogle Scholar
  55. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36(7):683–5PubMedCrossRefGoogle Scholar
  56. Howley PM, Munger K, Werness BA, Phelps WC, Schlegel R (1989) Molecular mechanisms of transformation by the human papillomaviruses. Princess Takamatsu Symp 20:199–206PubMedGoogle Scholar
  57. Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, Johnson RP, Cohen GB, Jung JU (2000) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5 protein. Immunity 13(3):365–74PubMedCrossRefGoogle Scholar
  58. Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75(2):891–902PubMedCrossRefGoogle Scholar
  59. Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3(4):281–94PubMedCrossRefGoogle Scholar
  60. Judde JG, Lacoste V, Briere J, Kassa-Kelembho E, Clyti E, Couppie P, Buchrieser C, Tulliez M, Morvan J, Gessain A (2000) Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi’s sarcoma and other diseases. J Natl Cancer Inst 92(9):729–36PubMedCrossRefGoogle Scholar
  61. Jussila L, Valtola R, Partanen TA, Salven P, Heikkila P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M, Tschachler E, Alitalo R, Alitalo K (1998) Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res 58(8):1599–604PubMedGoogle Scholar
  62. Kaaya EE, Parravicini C, Ordonez C, Gendelman R, Berti E, Gallo RC, Biberfeld P (1995) Heterogeneity of spindle cells in Kaposi’s sarcoma: comparison of cells in lesions and in culture. J Acquir Immune Defic Syndr Hum Retrovirol 10(3):295–305PubMedGoogle Scholar
  63. Kaposi M (1872) Idiopathisches multiples Pigmentsarkom der Haut. Archiv fur Dermatologie und Syphilis 3:265–73CrossRefGoogle Scholar
  64. Katano H, Hoshino Y, Morishita Y, Nakamura T, Satoh H, Iwamoto A, Herndier B, Mori S (1999) Establishing and characterizing a CD30-positive cell line harboring HHV-8 from a primary effusion lymphoma. J Med Virol 58(4):394–401PubMedCrossRefGoogle Scholar
  65. Katano H, Ogawa-Goto K, Hasegawa H, Kurata T, Sata T (2001) Human-herpesvirus-8-encoded K8 protein colocalizes with the promyelocytic leukemia protein (PML) bodies and recruits p53 to the PML bodies. Virology 286(2):446–55PubMedCrossRefGoogle Scholar
  66. Katano H, Sato Y, Kurata T, Mori S, Sata T (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 269(2):335–44PubMedCrossRefGoogle Scholar
  67. Kedes DH, Lagunoff M, Renne R, Ganem D (1997) Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus. J Clin Invest 100(10):2606–10PubMedCrossRefGoogle Scholar
  68. Kellam P, Boshoff C, Whitby D, Matthews S, Weiss RA, Talbot SJ (1997) Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J Hum Virol 1(1):19–29PubMedGoogle Scholar
  69. Kellam P, Bourboulia D, Dupin N, Shotton C, Fisher C, Talbot S, Boshoff C, Weiss RA (1999) Characterization of monoclonal antibodies raised against the latent nuclear antigen of human herpesvirus 8. J Virol 73(6):5149–55PubMedGoogle Scholar
  70. Klass CM, Krug LT, Pozharskaya VP, Offermann MK (2005) The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 105(10):4028–34PubMedCrossRefGoogle Scholar
  71. Komanduri KV, Luce JA, McGrath MS, Herndier BG, Ng VL (1996) The natural history and molecular heterogeneity of HIV-associated primary malignant lymphomatous effusions. J Acquir Immune Defic Syndr Hum Retrovirol 13(3):215–26PubMedGoogle Scholar
  72. Koon HB, Bubley GJ, Pantanowitz L, Masiello D, Smith B, Crosby K, Proper J, Weeden W, Miller TE, Chatis P, Egorin MJ, Tahan SR, Dezube BJ (2004) Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin OncolGoogle Scholar
  73. Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78(7):3601–20PubMedCrossRefGoogle Scholar
  74. Krug LT, Pozharskaya VP, Yu Y, Inoue N, Offermann MK (2004) Inhibition of infection and replication of human herpesvirus 8 in microvascular endothelial cells by alpha interferon and phosphonoformic acid. J Virol 78(15):8359–71PubMedCrossRefGoogle Scholar
  75. Kushner T (1995) Angels in America. Theatre Communications Group, Inc., 520 8th Ave., New York, NY 10018–4156Google Scholar
  76. Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D (2002) De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76(5):2440–8PubMedCrossRefGoogle Scholar
  77. Lagunoff M, Ganem D (1997) The structure and coding organization of the genomic termini of Kaposi’s sarcoma-associated herpesvirus. Virology 236(1):147–54PubMedCrossRefGoogle Scholar
  78. Lallemand F, Desire N, Rozenbaum W, Nicolas JC, Marechal V (2000) Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay. J Clin Microbiol 38(4):1404–8PubMedGoogle Scholar
  79. Laman H, Peters G, Jones N (2001) Cyclin-mediated export of human Orc1. Exp Cell Res 271(2):230–7PubMedCrossRefGoogle Scholar
  80. Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78(12):6585–94PubMedCrossRefGoogle Scholar
  81. Li H, Komatsu T, Dezube BJ, Kaye KM (2002) The Kaposi’s sarcoma-associated herpesvirus K12 transcript froma primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J Virol 76(23):11880–8PubMedCrossRefGoogle Scholar
  82. Li JJ, Huang YQ, Cockerell CJ, Friedman-Kien AE (1996) Localization of human herpes-like virus type 8 in vascular endothelial cells and perivascular spindle-shaped cells of Kaposi’s sarcoma lesions by in situ hybridization. Am J Pathol 148(6):1741–8PubMedGoogle Scholar
  83. Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM (2002) The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the IκB kinase complex. J Biol Chem 277(16):13745–51PubMedCrossRefGoogle Scholar
  84. Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, Chuang E, Zeichner SL (2004) Dissection of the Kaposi’s sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol 78(24):13637–52PubMedCrossRefGoogle Scholar
  85. Lubyova B, Pitha PM (2000) Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol 74(17):8194–201PubMedCrossRefGoogle Scholar
  86. Lukac DM, Kirshner JR, Ganem D (1999) Transcriptional activation by the product of open reading frame 50 of Kaposi’s sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73(11):9348–61PubMedGoogle Scholar
  87. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–73PubMedCrossRefGoogle Scholar
  88. Martin DF, Kuppermann BD, Wolitz RA, Palestine AG, Li H, Robinson CA (1999) Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N Engl J Med 340(14):1063–70PubMedCrossRefGoogle Scholar
  89. Matsushima AY, Strauchen JA, Lee G, Scigliano E, Hale EE, Weisse MT, Burstein D, Kamel O, Moore PS, Chang Y (1999) Posttransplantation plasmacytic proliferations related to Kaposi’s sarcoma-associated herpesvirus. Am J Surg Pathol 23(11):1393–400PubMedCrossRefGoogle Scholar
  90. McAllister SC, Hansen SG, Ruhl RA, Raggo CM, DeFilippis VR, Greenspan D, Fruh K, Moses AV (2004) Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood 103(9):3465–73PubMedCrossRefGoogle Scholar
  91. McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307(5710):739–41PubMedCrossRefGoogle Scholar
  92. Mercader M, Taddeo B, Panella JR, Chandran B, Nickoloff BJ, Foreman KE (2000) Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 156(6):1961–71PubMedGoogle Scholar
  93. Mocroft A, Youle M, Gazzard B, Morcinek J, Halai R, Phillips AN (1996) Anti-herpesvirus treatment and risk of Kaposi’s sarcoma in HIV infection. Royal Free/Chelsea and Westminster Hospitals Collaborative Group. AIDS 10(10):1101–5PubMedGoogle Scholar
  94. Monini P, Colombini S, Sturzl M, Goletti D, Cafaro A, Sgadari C, Butto S, Franco M, Leone P, Fais S, Leone P, Melucci-Vigo G, Chiozzini C, Carlini F, Ascherl G, Cornali E, Zietz C, Ramazzotti E, Ensoli F, Andreoni M, Pezzotti P, Rezza G, Yarchoan R, Gallo RC, Ensoli B (1999) Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi’s sarcoma. Blood 93(12):4044–58PubMedGoogle Scholar
  95. Moore PS, Chang Y (2003) Kaposi’s sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 57:609–39PubMedCrossRefGoogle Scholar
  96. Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol. 73(8):6892–6902PubMedGoogle Scholar
  97. Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BG, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Fruh K (2002a) A functional genomics approach to Kaposi’s sarcoma. Ann NY Acad Sci 975:180–91PubMedCrossRefGoogle Scholar
  98. Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BGM, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Früh K (2002b) KSHV-induced upregulation of the c-Kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol (in press)Google Scholar
  99. Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Kishishita M, Brady JN, Doniger J, Medveczky P, Rosenthal LJ (1998) Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 72(6):4980–8PubMedGoogle Scholar
  100. Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal LJ (2000) Characterization of the human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol 16(3):203–13PubMedCrossRefGoogle Scholar
  101. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU (2003) Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77(7):4205–20PubMedCrossRefGoogle Scholar
  102. Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B (2003) Kaposi’s sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-ζ-MEKERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 77(2):1524–39PubMedCrossRefGoogle Scholar
  103. Naranatt PP, Krishnan HH, Svojanovsky SR, Bloomer C, Mathur S, Chandran B (2004) Host gene induction and transcriptional reprogramming in Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res 64(1):72–84PubMedCrossRefGoogle Scholar
  104. Neipel F, Albrecht JC, Fleckenstein B (1997) Cell-homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71(6):4187–92PubMedGoogle Scholar
  105. Nicholas J, Zong JC, Alcendor DJ, Ciufo DM, Poole LJ, Sarisky RT, Chiou CJ, Zhang X, Wan X, Guo HG, Reitz MS, Hayward GS (1998) Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J Natl Cancer Inst Monogr 23:79–88PubMedGoogle Scholar
  106. Okuno T, Jiang YB, Ueda K, Nishimura K, Tamura T, Yamanishi K (2002) Activation of human herpesvirus 8 open reading frame K5 independent of ORF50 expression. Virus Res 90(1–2):77–89PubMedCrossRefGoogle Scholar
  107. Pantanowitz L, Dezube BJ, Pinkus GS, Tahan SR (2004) Histological characterization of regression in acquired immunodeficiency syndrome-related Kaposi’s sarcoma. J Cutan Pathol 31(1):26–34PubMedCrossRefGoogle Scholar
  108. Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, Moore PS, Chang Y (2000) Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 156(3):743–9PubMedGoogle Scholar
  109. Paulose-Murphy M, Ha NK, Xiang C, Chen Y, Gillim L, Yarchoan R, Meltzer P, Bittner M, Trent J, Zeichner S (2001) Transcription program of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 75(10):4843–53PubMedCrossRefGoogle Scholar
  110. Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE (1997) The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology 238(1):22–9PubMedCrossRefGoogle Scholar
  111. Polstra AM, Cornelissen M, Goudsmit J, van der Kuyl AC (2004) Retrospective, longitudinal analysis of serum human herpesvirus-8 viral DNA load in AIDS-related Kaposi’s sarcoma patients before and after diagnosis. J Med Virol 74(3):390–6PubMedCrossRefGoogle Scholar
  112. Polstra AM, Goudsmit J, Cornelissen M (2003) Latent and lytic HHV-8 mRNA expression in PBMCs and Kaposi’s sarcoma skin biopsies of AIDS Kaposi’s sarcoma patients. J Med Virol 70(4):624–7PubMedCrossRefGoogle Scholar
  113. Poole LJ, Yu Y, Kim PS, Zheng QZ, Pevsner J, Hayward GS (2002) Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J Virol 76(7):3395–420PubMedCrossRefGoogle Scholar
  114. Rabkin CS, Janz S, Lash A, Coleman AE, Musaba E, Liotta L, Biggar RJ, Zhuang Z (1997)Monoclonal origin of multicentric Kaposi’s sarcoma lesions. N Engl JMed 336(14):988–93CrossRefGoogle Scholar
  115. Radkov SA, Kellam P, Boshoff C (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6(10):1121–7PubMedCrossRefGoogle Scholar
  116. Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Früh K, Moses A (2005) Novel cellular genes essential for transformaton of endothelial cells by Kaposi1s sarcoma-associated herpesvirus. Cancer ResGoogle Scholar
  117. Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H, Herrington CS, Moore PS, Schulz TF (1997) The 222-to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71(8):5915–21PubMedGoogle Scholar
  118. Regezi JA, MacPhail LA, Daniels TE, DeSouza YG, Greenspan JS, Greenspan D (1993a) Human immunodeficiency virus-associated oral Kaposi’s sarcoma. A heterogeneous cell population dominated by spindle-shaped endothelial cells. AmJ Pathol 143(1):240–9Google Scholar
  119. Regezi JA, MacPhail LA, Daniels TE, Greenspan JS, Greenspan D, Dodd CL, Lozada-Nur F, Heinic GS, Chinn H, Silverman S, Jr., et al. (1993b) Oral Kaposi’s sarcoma: a 10-year retrospective histopathologic study. J Oral Pathol Med 22(7):292–7PubMedCrossRefGoogle Scholar
  120. Renne R, Barry C, Dittmer D, Compitello N, Brown PO, Ganem D (2001) Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75(1):458–68PubMedCrossRefGoogle Scholar
  121. Renne R, Lagunoff M, Zhong W, Ganem D (1996a) The size and conformation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 70(11):8151–4PubMedGoogle Scholar
  122. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996b) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2(3):342–6PubMedCrossRefGoogle Scholar
  123. Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y (2001) Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75(1):429–38PubMedCrossRefGoogle Scholar
  124. Roth WK, Brandstetter H, Sturzl M (1992) Cellular and molecular features of HIV-associated Kaposi’s sarcoma [editorial] [published erratum appears in AIDS 1992 Nov;6(11):following 1410]. AIDS 6(9):895–913PubMedGoogle Scholar
  125. Roth WK, Werner S, Risau W, Remberger K, Hofschneider PH (1988) Cultured, AIDS-related Kaposi’s sarcoma cells express endothelial cell markers and are weakly malignant in vitro. Int J Cancer 42(5):767–73PubMedGoogle Scholar
  126. Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93(25):14862–7PubMedCrossRefGoogle Scholar
  127. Rutgers JL, Wieczorek R, Bonetti F, Kaplan KL, Posnett DN, Friedman-Kien AE, Knowles DM, 2nd (1986) The expression of endothelial cell surface antigens by AIDS-associated Kaposi’s sarcoma. Evidence for a vascular endothelial cell origin. Am J Pathol 122(3):493–9PubMedGoogle Scholar
  128. Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73(7):5722–30PubMedGoogle Scholar
  129. Salahuddin SZ, Nakamura S, Biberfeld P, Kaplan MH, Markham PD, Larsson L, Gallo RC (1988) Angiogenic properties of Kaposi’s sarcoma-derived cells after long-term culture in vitro. Science 242(4877):430–3PubMedCrossRefGoogle Scholar
  130. Scully PA, Steinman HK, Kennedy C, Trueblood K, Frisman DM, Voland JR (1988) AIDS-related Kaposi’s sarcoma displays differential expression of endothelial surface antigens. Am J Pathol 130(2):244–51PubMedGoogle Scholar
  131. Seo T, Park J, Lim C, Choe J (2004) Inhibition of nuclear factor kappaB activity by viral interferon regulatory factor 3 of Kaposi’s sarcoma-associated herpesvirus. Oncogene 23(36):6146–55PubMedCrossRefGoogle Scholar
  132. Serraino D, Toma L, Andreoni M, Butto S, Tchangmena O, Sarmati L, Monini P, Franceschi S, Ensoli B, Rezza G (2001) A seroprevalence study of human herpesvirus type 8 (HHV8) in eastern and Central Africa and in the Mediterranean area. Eur J Epidemiol 17(9):871–6PubMedCrossRefGoogle Scholar
  133. Skobe M, Brown LF, Tognazzi K, Ganju RK, Dezube BJ, Alitalo K, Detmar M (1999) Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi’s sarcoma. J Invest Dermatol 113(6):1047–53PubMedCrossRefGoogle Scholar
  134. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86(4):1276–80PubMedGoogle Scholar
  135. Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, Haase AT (1999) Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 73(5):4181–7PubMedGoogle Scholar
  136. Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson DJ, Ganem D, Haase AT (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71(1):715–9PubMedGoogle Scholar
  137. Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R, Dittmer DP (2004) The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res 64(14):4790–9PubMedCrossRefGoogle Scholar
  138. Strauchen JA, Hauser AD, Burstein D, Jimenez R, Moore PS, Chang Y (1996) Body cavity-based malignant lymphoma containing Kaposi sarcoma-associated herpesvirus in an HIV-negative man with previous Kaposi sarcoma. Ann Intern Med 125(10):822–5PubMedGoogle Scholar
  139. Sturzl M, Blasig C, Schreier A, Neipel F, Hohenadl C, Cornali E, Ascherl G, Esser S, Brockmeyer NH, Ekman M, Kaaya EE, Tschachler E, Biberfeld P (1997) Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi’s sarcoma. Int J Cancer 72(1):68–71PubMedCrossRefGoogle Scholar
  140. Sun R, Lin SF, Gradoville L, Miller G (1996) Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 93(21):11883–8PubMedCrossRefGoogle Scholar
  141. Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73(3):2232–42PubMedGoogle Scholar
  142. Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G, Jones N (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390(6656):184–187PubMedCrossRefGoogle Scholar
  143. Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA 96(15):8449–54PubMedCrossRefGoogle Scholar
  144. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–21PubMedCrossRefGoogle Scholar
  145. Tomescu C, Law WK, Kedes DH (2003) Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi’s sarcoma-associated herpesvirus. JVirol 77(17):9669–84CrossRefGoogle Scholar
  146. Venetsanakos E, Mirza A, Fanton C, Romanov SR, Tlsty T, McMahon M (2002) Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. Exp Cell Res 273(1):21–33PubMedCrossRefGoogle Scholar
  147. Verschuren EW, Klefstrom J, Evan GI, Jones N (2002) The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2(3):229–41PubMedCrossRefGoogle Scholar
  148. Vieira J, O’Hearn P, Kimball L, Chandran B, Corey L (2001) Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol 75(3):1378–86PubMedCrossRefGoogle Scholar
  149. Vieira J, O’Hearn PM (2004) Use of the red fluorescent protein as amarker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology 325(2):225–40PubMedCrossRefGoogle Scholar
  150. Viejo-Borbolla A, Ottinger M, Schulz TF (2003) Human herpesvirus 8: biology and role in the pathogenesis of Kaposi’s sarcoma and other AIDS-related malignancies. Curr Infect Dis Rep 5(2):169–175PubMedGoogle Scholar
  151. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36(7):687–93PubMedCrossRefGoogle Scholar
  152. Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Sturzl M, Kerjaschki D, Alitalo K, Tschachler E (1999) Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab Invest 79(2):243–51PubMedGoogle Scholar
  153. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248(4951):76–9PubMedCrossRefGoogle Scholar
  154. West JT, Wood C (2003) The role of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 regulator of transcription activation (RTA) in control of gene expression. Oncogene 22(33):5150–63PubMedCrossRefGoogle Scholar
  155. Wigle JT, Oliver G (1999) Prox1 function is required for the development of themurine lymphatic system. Cell 98(6):769–78PubMedCrossRefGoogle Scholar
  156. Yarchoan R (2004) KSHV induces heme oxygenase: another trick by awily virus. Blood 103(9):3252–3253CrossRefGoogle Scholar
  157. Yu Y, Black JB, Goldsmith CS, Browning PJ, Bhalla K, Offermann MK (1999) Induction of human herpesvirus-8 DNA replication and transcription by butyrate and TPA in BCBL-1 cells. J Gen Virol 80 (Pt 1):83–90PubMedGoogle Scholar
  158. Zenger E, Abbey NW, Weinstein MD, Kapp L, Reis J, Gofman I, Millward C, Gascon R, Elbaggari A, Herndier BG, McGrath MS (2002) Injection of human primary effusion lymphoma cells or associated macrophages into severe combined immunodeficient mice causes murine lymphomas. Cancer Res 62(19):5536–42PubMedGoogle Scholar
  159. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13(11):2323–30PubMedGoogle Scholar
  160. Zhong W, Wang H, Herndier B, Ganem D (1996) Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl. Acad. Sci. USA 93(13):6641–6646PubMedCrossRefGoogle Scholar
  161. Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004) Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci USA 101(24):9073–8PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. C. McAllister
    • 1
  • A. V. Moses
    • 1
  1. 1.Vaccine and Gene Therapy InstituteOregon Health and Science UniversityBeavertonUSA

Personalised recommendations