Skip to main content

Membranen — Strukturen, Werkstoffe und Herstellung

  • Chapter
Membranverfahren

Part of the book series: VDI-Buch ((CHEMTECH))

  • 12k Accesses

Auszug

Ingenieuren, die an der Auslegung eines Membranprozesses arbeiten, steht ein etablierter Markt mit sehr breitem Angebot an selektiven und beständigen Membranen einer Vielzahl spezialisierter Anbieter zur Verfügung. Das Umsatzvolumen von Membranen und Modulen überstieg im Jahr 2000 5 Milliarden €. Es sind jährliche Zuwachsraten von 8 – 12 % zu erwarten [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alberts B (2002) Molecular biology of the cell. 4. Aufl, Garland Science, New York

    Google Scholar 

  2. Atkins PW (2002) Physkalische Chemie. 3. Aufl, Wiley/VCH, Weinheim

    Google Scholar 

  3. Bergmann W (2001) Werkstofftechnik, Teil I: Grundlagen. 4. Aufl, Carl Hanser Verlag, München, Wien

    Google Scholar 

  4. Bhave RR (1991) Inorganic membranes-Synthesis, characteristics and applications. Van Nostrand Reinhold, New York

    Google Scholar 

  5. Blume I, Schwering PJF, Mulder MHV, Smolders CA (1991) Vapour sorption and permeation properties of poly (dimethylsiloxane) films. Journal of membrane science, 61: 85

    Article  CAS  Google Scholar 

  6. Boyadzhiev L, Lazarova Z (1995) Liquid membranes (liquid pertraction). In: Noble RD, Stern SA (Hrsg) Membrane separation processes, Separations technology-principles and applications. Membrane science and technology series 2, Elsevier, Amsterdam

    Google Scholar 

  7. Breck DW (1974) Zeolite molecular sieves: structure, chemistry, and use, Wiley, New York

    Google Scholar 

  8. Burggraaf AJ, Cot L (1996) Fundamentals of Inorganic Membrane Science and Technology. Elsevier, Amsterdam

    Google Scholar 

  9. Buschatz H, Dageförde B, Jakoby K, Peinemann KV, Paul D (2001) Hochselektive Stofftrennung mit Carriermembranen — Stand der Entwicklung und Erwartungen. Chemie Ingenieur Technik 73: 297–303

    Article  CAS  Google Scholar 

  10. Cadotte, JE (1981) Interfacially synthesized reverse osmosis membrane, US Patent 4,277,344

    Google Scholar 

  11. Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes-state of their development and perspectives. Microporous and mesoporous materials, 38(1): 3

    Article  CAS  Google Scholar 

  12. Centeno TA, Fuertes AB (1999) Supported carbon molecular sieve membranes based on a phenolic resin, Journal of membrane science 160: 201

    Article  CAS  Google Scholar 

  13. Cussler EL, Aris R, Bhown A (1989) On the limits of facilitated diffusion, Journal of membrane science 43: 149

    Article  CAS  Google Scholar 

  14. Elias HG (1997) An introduction to polymer science. 1. Aufl., VCH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  15. Ellinghorst G, Niemöller A, Scholz H, Scholz M, Steinhauser H (1987) Membranes for pervaporation by radiation grafting and curing by plasma processing. Proceedings of the 2nd International Conference on Pervaporation Processes in the Chemical Industry

    Google Scholar 

  16. Eriksen OI, Vik IB, Dahl IM (1997) Separation of ethene from ethane with permeators based on silver ion-exchanged nafion hollow fibers. Polymeric materials science and engineering 77: 265

    CAS  Google Scholar 

  17. Fischer K, Kragl U, Ondruschka B (2001) Technische Chemie 2000, Katalyse und (Mikro-)Reaktoren; Brennstoffzellen, ionische Flüssigkeiten und nichtklassische Energieformen. Nachrichten aus der Chemie 49: 374

    Article  Google Scholar 

  18. Gavalas GR, Megiris CE, Nam SW (1989) Deposition of H2-permselective SiO2 films. Chemical engineering science 44(9): 1829

    Article  CAS  Google Scholar 

  19. Hofmann D, Fritz L, Ulbrich J, Schepers C, Böhning M (2000) Detailed atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromolecular Theory and Simulations 9: 293

    Article  CAS  Google Scholar 

  20. Hörpel G, Hying C, Kuppinger, FF (2001) Keramische Membranfolien vereinigen die Vorteile von polymeren und keramischen Membranen. Preprints des Aachener Membran Kolloquium (27.–29.3.2001), Aachen

    Google Scholar 

  21. http://custom-glass.com/making2.html

    Google Scholar 

  22. http://www.corning.com/lightingmaterials/images/porous.pdf

    Google Scholar 

  23. http://www.mempro.com/m213td.html. Aus: General Electric permselective membranes (1982) Membrane products operation, Medical systems business operations

    Google Scholar 

  24. http://www.mastcarbon.com

    Google Scholar 

  25. Irusta S, Pina MP, Menendez M, Santamaria J (1998) Development and application of perovskite-based catalytic membrane reactors. Catalysis Letters 54: 69

    Article  CAS  Google Scholar 

  26. Ismail AF, David LIB (2001) A Review on the Latest Development of Carbon Membranes for Gas Separation. Journal of membrane science 193: 1–18

    Article  CAS  Google Scholar 

  27. Itoh N, Kato T, Uchida K, Haraya K (1994) Preparation of pore-free disk of La(1−X)SrXCoO3 mixed conductor and its oxygen permeability. Journal of membrane science 92: 239

    Article  CAS  Google Scholar 

  28. Jayaraman V, Lin YS, Pakala M, Lin RY (1995) Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. Journal of membrane science 99:89

    Article  CAS  Google Scholar 

  29. Kaiser V, Stropnik C (2000) Membranes from polysulfone / N,N-Dimethylacetamide / water system; structure and water Flux. Acta Chimica Slovenica 47: 205

    CAS  Google Scholar 

  30. Li S, Jin W, Gu X, Xu N, Shi J, Ma YH (2000) Tubular La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite-type membranes: preparation, oxygen permeation and partial oxidation of methane to syngas. 4th International Conference on Catalysis in Membrane Reactors, Proceedings, Zaragoza

    Google Scholar 

  31. Li S, Jin W, Huang P, Xu N, Shi J, Lin YS, Hu MZC, Payzant EA (1999) Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2FeO3−δ(A = Sr, Ba, Ca) membranes. Industrial and engineering chemistry research 38: 2963

    Article  CAS  Google Scholar 

  32. Lin X, Falconer JL, Noble RD (1998) Parallel pathways for transport in ZSM-5 zeolite membranes. Chemistry of materials 10: 3716

    Article  CAS  Google Scholar 

  33. Loeb S, Sourirajan S (1963) Sea water demineralization by means of an osmotic membrane. Advances in chemistry series 38: 117

    Article  CAS  Google Scholar 

  34. Loeb S, Sourirajan S (1964) High flow porous membranes for separation of water from saline solutions. US Patent 3,133,132

    Google Scholar 

  35. Madigan MM (2002) Brock Biology of Microorganisms. 10. Aufl, Prentice Hall, New Jersey

    Google Scholar 

  36. Mahajan R, Koros WJ (2000) Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Industrial and engineering chemistry research 39(8):2692

    Article  CAS  Google Scholar 

  37. Mahajan R, Vu DQ, Koros WJ (2002) Mixed Matrix Membrane Materials: An Answer to the Challenges Faced by Membrane Based Gas Separations Today? Journal-Chinese institute of chemical engineers 33(1): 77

    CAS  Google Scholar 

  38. Mähr U (2001) Herstellung von Porenmembranen aus Polyacrylsäure-Dispersionen mit einstellbaren Stofftransporteigenschaften. Dissertation, Berlin

    Google Scholar 

  39. Maisterrena B, Couturier R, Perrin B (2002) Artificial biomimetic membranes for the active and selective transport of small molecules. Enzyme and microbial technology 30:125

    Article  CAS  Google Scholar 

  40. Menges G (2002) Werkstoffkunde Kunststoffe. 5. Aufl., Carl Hanser Verlag, München, Wien

    Google Scholar 

  41. Medved M, Wasserscheid P, Melin T (2001) Facilitated transport using ionic liquids supported in pure alumina membranes. 28th Conference SSCHE, Proceedings on CD ROM, T Matliare, Slowakei

    Google Scholar 

  42. Morgenstern J (2001) “Carbon Membranes a Negev Nuclear Research Center Commercial Spin Off Set for Major Business Inroads. Israel High-Tech Investment Report, Vol. XVII(8)

    Google Scholar 

  43. Morooka S, Yan S, Yokoyama S, Kusakabe K (1995) Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall, Separation science and technology, 30(14): 2877

    Article  CAS  Google Scholar 

  44. Mulder M (1998) Basic Principles of Membrane Technology. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  45. Müller-Plathe F (1994) Polymer Permeation-A Computational Approach. Acta Polymerica (Review Article) 45: 259

    Article  Google Scholar 

  46. Noack M, Kölsch P, Schäfer R (2002) Gastrennung an mikroporösen anorganischen Membranen. Vortrag im Rahmen „Trends in der Membrantechnik — Gastrennung mit Membranverfahren“ (29./30.04.2002). FhG-IGB, Stuttgart

    Google Scholar 

  47. Noble RD, Coval CA, Pellegrino JJ (1989) Facilitated transport membrane systems, Chemical engineering progress, 85(3): 58

    CAS  Google Scholar 

  48. Nunes SP, Peinemann KV (2001) Membrane Technology in the Chemical Industry, Wiley/VCH, Weinheim

    Google Scholar 

  49. Pez GP, Carlin RT, Laciak DV, Sorensen C (1988) Method for gas separation, US Pat. 4761164

    Google Scholar 

  50. Raab T, Samhaber WM (2001) Separation performance of commertial and plasma modified membranes under high operating pressures. 3rd ECCE Proceedings, Nürenberg

    Google Scholar 

  51. Poschmann T (2000) Metallmembranen zur Wasserstoffseparation in Brennstoffzellensystemen für mobile Anwendungen. Dissertation, RWTH Aachen

    Google Scholar 

  52. Roland E, Kleinschmit P (2001) Zeolites. In: Ullmann’s Encyclopedia of industrial chemistry, 6. Aufl (CD-ROM)

    Google Scholar 

  53. Saracco G, Neomagus HWJP, Versteeg GF, van Swaaij WPM (1999) High-temperature membrane reactors: potential and problems. Chemical engineering science 54(13–14): 1997

    Google Scholar 

  54. Scott K (1998) Handbook of industrial membranes. 2. Aufl, Elsevier, Oxford

    Google Scholar 

  55. Sirkar KK, Shanbhag PV, Kovvali S (1999) Membrane in a reactor: a functional perspective. Industrial and engineering chemistry research 38: 3715

    Article  CAS  Google Scholar 

  56. Staude E (1992) Membranen und Membranprozesse. VCH Verlag Weinheim

    Google Scholar 

  57. Toshima N (1992) Polymers for Gas Separation, 1. Aufl, VCH, New York

    Google Scholar 

  58. Venkataraman VK, Guthrie HD, Avellanet RA, Driscoll DJ (1998) Overview of U.S. DOE’s Natural Gas-to-Liquids RD&D Program and Commercialization Strategy. Studies in surface science and catalysis 119: 913–918

    Article  CAS  Google Scholar 

  59. Vlugt TJH (2000) Adsorption and diffusion in zeolites: A computational study. Disertation, Universität Amsterdam

    Google Scholar 

  60. Voet D (2002) Biochemistry. 3. Aufl, Wiley, New York

    Google Scholar 

  61. Vu DQ, Koros JK, Miller SJ (2002) High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fibre Membranes. Industrial and engineering chemistry research 41: 367–380

    Article  CAS  Google Scholar 

  62. Walker DRB, Koros WJ (1991) Transport characterization of a polypyrrolone for gas separations. Journal of membrane science 55: 99

    Article  CAS  Google Scholar 

  63. Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angewandte Chemie (International Edition) 39: 3772

    Article  CAS  Google Scholar 

  64. Wesselingh JA, Krishna R (2000) Mass transfer in multicomponent mixtures. 1. Aufl., Delft University Press

    Google Scholar 

  65. Wijmans JG, Baker RW (1995) The solution-diffusion modell: a review. Journal of membrane science 107: 1

    Article  CAS  Google Scholar 

  66. Zeng Y, Lin YS, Swartz SL (1998) Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of membrane science 150: 87

    Article  CAS  Google Scholar 

  67. Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. Journal of membrane science 137: 145

    Article  CAS  Google Scholar 

  68. Zsigmondy R, Bachmann W (1918) Über neue Filter. Zeitschrift für Anorganische und Allgemene Chemie 103: 119

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Membranen — Strukturen, Werkstoffe und Herstellung. In: Membranverfahren. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34328-8_2

Download citation

Publish with us

Policies and ethics