Advertisement

Messtechnik

  • Swen Müller
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Die Verarbeitung, Übertragung, Wandelung und Konservierung von Audiosignalen ist stets mit gewissen Fehlern behaftet, die ab einer bestimmten Höhe den subjektiven Klangeindruck verschlechtern können. Drei wichtige Schlüsselkriterien definieren die Qualität eines Audiosystems: Der Frequenzgang, also die Gleichmäßigkeit, mit der alle in den Audiobereich von 20 Hz bis 20 kHz fallenden Frequenzen reproduziert werden, der Dynamikumfang, welcher das Leistungsverhältnis des höchsten noch unverzerrt übertragbaren Sinus-Signals zum Grundrauschen definiert, und die nichtlinearen Verzerrungen, welche für das Entstehen von neuen, im Originalsignal nicht unbedingt vorhandenen Frequenzen verantwortlich sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albrecht H (2001 ) A Family of Cosine-sum Windows for High-Resolution Measurements. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’01Google Scholar
  2. Aoshima N (1981) Computer-generated pulse signal applied for sound measurement. J Acoust Soc Amer 69/5:1484-1488CrossRefGoogle Scholar
  3. Berkhout AJ (1980) A New Method to Acquire Impulse Responses in Concert Halls. J Acoust Soc Amer 68/1:179-183CrossRefGoogle Scholar
  4. Borish J (1983) An Efficient Algorithm for Measuring the Impulse Response Using Pseudorandom Noise. J Audio Eng Soc 33/7/8:478-488Google Scholar
  5. Borish J (1985) Self-Contained Crosscorrelation Program for Maximum Length Sequences. J Audio Eng Soc 33/11:888-891Google Scholar
  6. Dolby R (1973) CCIR/ARM: A Practical Noise Measurement Method. 60th AES Convention, Preprint 1353Google Scholar
  7. Fielder L (1982) Dynamic-Range Requirements for Subjectively Noise-Free Reproduction of Music. J Audio Eng Soc 30/7/8:504-511Google Scholar
  8. Farina A (2000) Simultaneous Measurement of Impulse Response and Distortion with a Swept-sine technique. 108th AES Convention, Paris, Preprint 5093Google Scholar
  9. Griesinger D (1996) Beyond MLS – Occupied Hall Measurement with FFT Techniques. 101st AES Convention, Preprint 4403Google Scholar
  10. Harris F (1978) On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc IEEE 66:51-83CrossRefGoogle Scholar
  11. Herlufsen H (1984) Dual Channel FFT Analysis (Part I, II). Brüel & Kjær Technical Review No. 1-1984. www.bksv.com/pdf/Bv0013.pdfGoogle Scholar
  12. Keele D (1974) Low-Frequency Loudspeaker Assessment by Nearfield Sound-Pressure-Measurements. J Audio Eng Soc 22/3:154-162Google Scholar
  13. Klippel W (2003) Measurement of Impulsive Distortion, Rub and Buzz and other Disturbances. 114. AES Convention, Preprint 5734Google Scholar
  14. Leinonen (1978) Correlation of Audio Distortion Measurements. J Audio Eng Soc 26/1/2:12-19Google Scholar
  15. Müller S (2001) Transfer-function Measurements with Sweeps. J Audio Eng Soc 49:443-471Google Scholar
  16. Mommertz E (1995) Measuring Impulse Responses with Preemphasized Pseudo Random Noise derived from Maximum Length Sequences. Applied Acoustics 44:195-214CrossRefGoogle Scholar
  17. Nuttall A (1981) Some windows with very good side lobe behavior. IEEE Trans. Acoustics, Speech and Signal Processing 29:84-91CrossRefGoogle Scholar
  18. Poletti M (1988) Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution. J Audio Eng Soc 36:457-468Google Scholar
  19. Prohs JR (Hrsg) (1988) Time Delay Spectrometry - An Anthology of the Works of Richard C. Heyser on Measurement Analysis and Perception. AES, New YorkGoogle Scholar
  20. Rife D (1989) Transfer-Function Measurement with Maximum-Length Sequences. J Audio Eng Soc 37:419-444Google Scholar
  21. Schroeder M (1970) Synthesis of Low-Peak-Factor Signals and Binary Sequences with Low Autocorrelation. IEEE Trans Info. Theory IT 16-1:85-89CrossRefGoogle Scholar
  22. Schoukens J (1988) Survey of Excitation Signals for FFT based Signal Analyzers. IEEE Trans Instrumentation and Measurement 37:342-352CrossRefGoogle Scholar
  23. Shoukens J, Pintelon R (1990) Measurement of Frequency Response Functions in Noise Environments. IEEE Trans Instrumentation and Measurement 39/6:905-909CrossRefGoogle Scholar
  24. Stan GB, Embrechts JJ, Archambeau D (2002) Comparison of Different Impulse Response Measurement Techniques, J Audio Eng Soc 50/4:249-262Google Scholar
  25. Suzuki Y, Futoshi A, Kim HY, and Sone T (1995) An optimum computer-generated pulse signal suitable for the measurement of very long impulse responses. J Acoust Soc Amer 97/2:1119-1123CrossRefGoogle Scholar
  26. Vanderkooy J (1986) Another Approach to Time-Delay Spectrometry. J Audio Eng Soc 34/7/8:523-538Google Scholar
  27. Withlock B (1995) Interconnection of balanced and unbalanced equipment. Jensen Transformers Application note 003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Swen Müller

There are no affiliations available

Personalised recommendations