Skip to main content

Large Eddy Simulation of a Turbulent Ethylene/Air Diffusion Flame

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 56))

Abstract

As combustion generated nano-organic particles (NOC) may pose significant health and environmental problems, there is great scientific interest in studying their formation and evolution in turbulent combustion systems. Traditional approaches to turbulent combustion numerical modeling apply Reynolds averaging techniques (RANS) to predict the behavior of the mean values of the reacting flow properties. In this way, unsteady effects are not taken into account in the formation of nanoparticles. Large Eddy Simulation represents an attractive methodology for studying turbulent reacting flows and this approach is becoming possible as computational resources are increasing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Peters. Laminar diffusion flamelet models in non-premixed turbulent combustion. Proc. Energy Combustion Sci., 10, 319–339, 1984.

    Article  Google Scholar 

  2. A. D'Anna, A. Violi, A. D'Alessio and A. Sarofim. A reaction pathway for nanoparticle formation in rich premixed flames. Combust. Flame, 127, 1995–2003, 2001.

    Article  Google Scholar 

  3. C.D. Pierce. Progress Variable Approach for Large Eddy Simulation of Turbulent Combustion. PhD Thesis, Stanford University, 2001.

    Google Scholar 

  4. R.S. Barlow, A.N. Karpetis, J.H. Frank and J.-Y. Chen. Scalar profiles and NO formation in laminar opposed-flow partially premixed methaneair flames. Combust. Flame 127, 2102–2118, 2001.

    Article  Google Scholar 

  5. C.D. Pierce and P. Moin. Progress variable approach for large eddy simulation of non premixed turbulent combustion. J. Fluid Mech., 504, 72–97, 2004.

    Article  Google Scholar 

  6. E.P. DesJardins and H.S. Frankel. Large Eddy Simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models. Phys. Fluids, 10, 2298–2314, 1998.

    Article  Google Scholar 

  7. M. Germano, U. Piomelli, P. Moin and W.H. Cabot. A dynamic subgridscale eddy viscosity model. Phys. Fluids, A 3, 1760–1765, 1991.

    Article  MATH  Google Scholar 

  8. M. Rullaud. Modélisation de la combustion turbulente via une méthode de tabulation de la cinétique chimique détaillée couplée à des fonctions de densités de probabilité. Application aux foyers aéronautiques. Théses de physique, INSA Rouen, 2004.

    Google Scholar 

  9. L. Vervisch, R. Hauguel, P. Domingo and M. Rullaud. Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J. of Turbulence, 5, 2004.

    Google Scholar 

  10. N. Peters. Turbulent Combustion. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  11. C.D. Pierce and P. Moin. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids, 10, 3041–3044, 1998.

    Article  Google Scholar 

  12. J. Jimenez, A. Linan, M.M. Rogers and F.J. Higuera. A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows. J. Fluid Mech., 349, 149–171, 1997.

    Article  MATH  Google Scholar 

  13. A.W. Cook and J.J. Riley. Subgrid-scale modeling for turbulent reacting flows. Combust. Flame, 112, 593–606, 1998.

    Article  Google Scholar 

  14. J.A. Miller and C.F. Melius. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 91, 21–39, 1992.

    Article  Google Scholar 

  15. M. Commodo, A. Violi, A. D'Alessio, A. D'Anna, C. Allouis, F. Beretta and P. Minutolo. Soot and nanoparticle concentration in a turbulent nonpremixed ethylene/air flame from laser induced emission measurement at 213 nm. 28th Meeting of the Italian Section of the Combustion Institute, Naples, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Cecere, D., Gaudiuso, G., D’Anna, A., Verzicco, R. (2007). Large Eddy Simulation of a Turbulent Ethylene/Air Diffusion Flame. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_27

Download citation

Publish with us

Policies and ethics