Skip to main content

Analysis of Premixed Turbulent Spherical Flame Kernels

  • Conference paper
Complex Effects in Large Eddy Simulations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 56))

  • 1399 Accesses

Abstract

The present study discusses results from a number of DNS simulations of turbulent flame kernels. The description of the chemistry in these calculations was based on the Flamelet Generated Manifolds (FGM) technique. The differences are imposed by varying the turbulence intensity and length scale within the thin reaction zones regime. This results in changes in the flame-turbulence interaction. The goal of the study is to see if the presently used reduced chemistry is able to properly deal with the turbulent modulations defined by stretch and curvature of the local flamelets. Especially the influences of the given turbulence effects to the local mass burning rate is investigated. Also global flame dynamics are described and an interpretation of the latter is given in terms of local quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.P.H. de Goey and J.H.M. ten Thije Boonkkamp. A Flamelet description of premixed laminar flames and the relation with flame stretch. Combust. Flame, 119:253–271, 1999.

    Article  Google Scholar 

  2. L.P.H. de Goey, T. Plessing, R.T.E. Hermanns, and N. Peters. Analysis of the flame thickness of turbulent flamelets in the thin reaction zones regime. Proc. Combust. Inst., 30:859–866, 2005.

    Article  Google Scholar 

  3. K.W. Jenkins and R.S. Cant. Curvature effects on flame kernels in a turbulent environment. Proc. Comb. Inst., 29:2023–2029, 2002.

    Article  Google Scholar 

  4. S. Gashi, J. Hult, K.W. Jenkins, N. Chakraborty, R.S. Cant, and C.F. Kaminski. Curvature and wrinkling of premixed flame kernelscomparisons of OH PLIF and DNS data. Proc. Combust. Inst., 30:809–817, 2003.

    Article  Google Scholar 

  5. D. Thévenin. Three-Dimensional direct simulation and structure of expanding turbulent methane flames. Proc. Combust. Inst., 30:2005.

    Google Scholar 

  6. A.N. Lipatnikov and J. Chomiak. Transient geometrical effects in turbulent flames. Comb. Sci. Techn., 154:75–117, 2000.

    Article  Google Scholar 

  7. R.J.M. Bastiaans, L.M.T. Somers, and H.C. de Lange. DNS of nonpremixed combustion in a compressible mixing layer, In: Geurts, B.J. (ed) Modern Simulation Strategies for Turbulent Flow, 247–262. R.T. Edwards Publishers, Philadelphia, USA, Book Chapter ISBN 1–930217–04–8, 2001.

    Google Scholar 

  8. CHEM1D. A one-dimensional laminar flame code. Eindhoven University of Technology. http://www.combustion.tue.nl/chem1d/

  9. J. Meyers, B.J. Geurts, and M. Baelmans. Database analysis of errors in large-eddy simulations. Phys. Fluids, 15(9):2740–2755, 2003.

    Article  Google Scholar 

  10. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, and Z. Qin. http://www.me.berkeley.edu/gri mech/

  11. J.A. van Oijen. Flamelet-generated manifolds: development and application to premixed laminar flames. Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 2002.

    Google Scholar 

  12. R.J.M. Bastiaans, J.A. van Oijen, S.M. Martin, L.P.H. de Goey, and H. Pitsch. DNS of lean premixed turbulent spherical flames with a flamelet generated manifold, CTR Annual Research Briefs, 257–268, 2004.

    Google Scholar 

  13. J.A. van Oijen, R.J.M. Bastiaans, G.R.A. Groot, and L.P.H. de Goey. Direct numerical simulations of premixed turbulent flames with reduced chemistry: Validation and flamelet analysis. Flow, Turbulence and Combustion, 75:67–84, 2005.

    Article  MATH  Google Scholar 

  14. B.J. Geurts. Mixing efficiency in turbulent shear layers. J. Turbulence, 2(1):17, 2001.

    MathSciNet  Google Scholar 

  15. N. Peters. Turbulent Combustion. Cambridge University Press, 2000.

    Google Scholar 

  16. G.R.A. Groot and L.P.H. de Goey. A computational study on propagating spherical and cylindrical premixed flames. Proc. Combust. Inst., 29:1445–1451, 2002.

    Article  Google Scholar 

  17. S.H. Chung and C.K. Law. An Integral Analysis of the structure and propagation of stretched premixed flames. Combust. Flame, 72:325–336, 1988.

    Article  Google Scholar 

  18. R.J.M. Bastiaans, S.M. Martin, H. Pitsch, J.A. van Oijen, and L.P.H. de Goey. Flamelet analysis of turbulent combustion. Lecture notes in computer science, 3516:64–71, 2005.

    Article  Google Scholar 

  19. J.A. van Oijen, G.R.A. Groot, R.J.M. Bastiaans, and L.P.H. de Goey. A flamelet analysis of the burning velocity of premixed turbulent expanding flames. Proc. Combust. Inst., 30:657–664, 2005.

    Article  Google Scholar 

  20. J.A. van Oijen, R.J.M. Bastiaans, and L.P.H. de Goey. Flamelet analysis of direct numerical simulations of premixed turbulent flames. ECCOMAS, Lisbon, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Bastiaans, R.J., de Swart, J.A., van Oijen, J.A., de Goey, L.H. (2007). Analysis of Premixed Turbulent Spherical Flame Kernels. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_26

Download citation

Publish with us

Policies and ethics