Skip to main content

Lattice-Boltzmann LES of Vortex Shedding in the Wake of a Square Cylinder

  • Conference paper
Complex Effects in Large Eddy Simulations

Abstract

The success in the use of lattice-Boltzmann methods for the simulation of laminar .ows has prompted the interest in extending the technique for the simulation of turbulent flows. In this paper, a square cylinder at Re = 21400 is used to investigate the suitability of lattice-Boltzmann methods to solve turbulent unsteady problems with open boundary conditions. Numerical simulations are performed with a single-relaxation-time lattice-Boltzmann method and with a large-eddy simulation turbulence model. These simulations present several not-fully-resolved issues for lattice-Boltzmann methods, which are briefly discussed in this paper. Specifically, we propose a filtered-density open-boundary condition for fluid-flow simulations with the lattice-Boltzmann equation. This filter modification of inflow boundary condition is shown to improve simulations of unsteady flows at high Reynolds numbers, in terms of calculation stability and speed, and quality of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Geller, M. Krafczyk, J. Toelke, S. Turek, and J. Hron. Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Computer & Fluids, 35:888–897, 2006.

    Article  Google Scholar 

  2. S. Chen and G. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  3. S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford, 2001.

    Google Scholar 

  4. D. A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Models. An Introduction. Lecture Notes in Mathematics 1725. Springer, 2000.

    Google Scholar 

  5. D. Yu, R. Mei, L.-S. Luo, and W. Shyy. Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences, 39(39):329–367, 2003.

    Article  Google Scholar 

  6. F. J. Higuera and J. Jiménez. Boltzmann approach to lattice gas simulations. Europhysical Letters, 1989.

    Google Scholar 

  7. Y.H. Qian, D. d'Humières, and P. Lallemand. Lattice BGK Models for Navier-Stokes Equation. Europhysics Letters, 17(6):479–484, 1992.

    MATH  Google Scholar 

  8. M. Krafczyk. Gitter-Boltzmann-Methoden: Von der Theorie zur Anwendung. Habilitation Thesis, 2001.

    Google Scholar 

  9. H. Hartmann, J. J. Derksen, C. Montavon, J. Pearson, I. S. Hamill, and H. E. A. van den Akker. Assessment of large eddy and RANS stirred tank simulations by means of LDA. Chemical Engineering Science, 59(12):2419–2432, 2004.

    Article  Google Scholar 

  10. S. Menon and J.-H. Soo. Simulation of vortex dynamics in threedimensional synthetic and free jets using the large-eddy lattice Boltzmann method. Journal of Turbulence, 5(032), 2004.

    Google Scholar 

  11. J. J. Derksen. Simulations of confined turbulent vortex flow. Computer & Fluids, 34(3):301–318, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Krafczyk, J. Toelke, and L.-S. Luo. LES simulations with a multiple relaxation time LB model. International Journal of Modern Physics B, 17:33–39, 2003.

    Article  Google Scholar 

  13. H. Yu and S. Girimaji. Near-field turbulent simulations of rectangular jets using lattice boltzmann method. Physics of Fluids, 17:125106, 2005.

    Article  Google Scholar 

  14. S. Hou, J. Sterling, S. Chen, and G. D. Doolen. A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Institute Communications, 1996.

    Google Scholar 

  15. H. Yu, S. S. Girimaji, and L.-S. Luo. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann methods. Journal of Computational Physics, 2005.

    Google Scholar 

  16. F. K. Chow and P. Moin. A further study of numerical errors in largeeddy simulations. Journal of Computational Physics, 184:366–380, 2003.

    Article  MATH  Google Scholar 

  17. W. Rodi, J. H. Ferziger, M. Breuer, and M. Pourquié. Status of large eddy simulation: Results of a workshop. Transactions of the ASME, 119:248–262, 1997.

    Article  Google Scholar 

  18. R. Mei, D. Yu, W. Shyy, and L.-S. Luo. Force evaluation in the lattice Boltzmann method involving curved geometry. Physical Review E, 65:041203, 2002.

    Article  Google Scholar 

  19. ERCOFTAC. Test case LES2: Flow past a long square cylinder. http://www.ercoftac.org, 1997.

  20. D. A. Lyn, S. Einav, W. Rodi, and J. H. Park. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. Journal of Fluid Mechanics, 1994.

    Google Scholar 

  21. D. Yu, R. Mei, and W. Shyy. Improved treatment of the open boundary in the method of lattice Boltzmann equation. Progress in Computational Fluid Dynamics, 5(1/2):3–12, 2005.

    Article  Google Scholar 

  22. D. Noble, S. Chen, J. Georgiadis, and R. O. Buckius. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7:203–209, 1995.

    Article  MATH  Google Scholar 

  23. Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9:1591–1598, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. A. Skordos. Initial and boundary conditions for the lattice Boltzmann method. Physical Review E, 48(6):4823–4842, 1993.

    Article  MathSciNet  Google Scholar 

  25. D. d'Humières. Rarefied gas dynamics: Theory and simulations. In B. D. Shizgal and D. P. Weaver, editors, Generalized lattice Boltzmann equations, volume 159 of Progress in Astronautics and Aeronautics, pages 450–458. AIAA, Washington DC, 1992.

    Google Scholar 

  26. X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of Statistical Physics, 88:927–944, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Martínez-Lera, P., Izquierdo, S., Fueyo, N. (2007). Lattice-Boltzmann LES of Vortex Shedding in the Wake of a Square Cylinder. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_15

Download citation

Publish with us

Policies and ethics