Skip to main content

Rheological Properties

  • Chapter
Food Physics

Abstract

Rheology is the branch of physics in which we study the way in which materials deform or flowin response to applied forces or stresses. The material properties that govern the specific way in which these deformation or flow behaviors occur are called rheological properties. The Greek philosopher and scholar, Heraclit (550–480 BC) once said “πάντα p ɛĩ” (“everything flows”). In the context of physics, “flow” can be defined as continuous deformation over time, and it can be said that all materials can flow. Therefore the ability to flow is not only possessed by gases and liquids, but also by solids to a varying degree. Indeed, we all know examples of solids which are capable of continuous deformation over time (flow), like asphalt on a road surface after long term usage. It is also evident that temperature can have a strong influence on the ability of materials to flow. For example, the asphalt road surface will deform at a faster rate when carrying traffic during time periods of elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Steffe JF (1996) Rheological Methods in Food Process Engineering, 2nd ed N. Freeman Press, East Lansing

    Google Scholar 

  2. Mezger Th (2000) Das Rheologie-Handbuch, Vincentz-Verlag, Hannover

    Google Scholar 

  3. Wijk RA de, Terpstra MEJ, Janssen AM, Prinz JF (2006) Perceived creaminess of semisolid foods. Trends in Food Science and Technology 17: 412–422.

    Article  Google Scholar 

  4. Rao MA, (1999) Rheology of Fluids and Semisolid Foods: Principles and Applications. Kluwer Academic, Dordrecht 1999

    Google Scholar 

  5. Lucas PW, Prinz JF, Agrawal KR, Bruce IC (2002) Food physics and oral physiology. Food Quality and Preference 13:203–213

    Article  Google Scholar 

  6. Ferry JD (1980) Viscoelastic Properties of Polymers. Wiley New York

    Google Scholar 

  7. DIN53019 (2004) Viscosimetry — Measurement of viscosities and flow curves by means of rotation viscometers — Part 1–2, in [101]

    Google Scholar 

  8. ASTM D2196 Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational (Brookfield type) Viscometer, in [132]

    Google Scholar 

  9. DIN ENISO 2884 (2006) Paints and varnishes — Determination of viscosity using rotary viscometers — Part 1–2, in [101]

    Google Scholar 

  10. Rosenthal AJ (1999) Food Texture, Perception and Measurement. Aspen Publishers, Gaithersburg, p. 89

    Google Scholar 

  11. Peleg M, Bagley EB (1982) Physical Properties of Foods. AVI Publishing, Westport

    Google Scholar 

  12. van Vliet T, Luyten H (1995) Fracture mechanics of solid foods, in Dickison E (ed) New Physicochemical Techniques for the Characterization of Complex Food Systems. Blackie, Glasgow, pp. 157–176

    Google Scholar 

  13. Walstra P (ed.) (1980) Evaluation of the firmness of butter. Int. Dairy Federation Document, Brussels 135:4–11

    Google Scholar 

  14. Meyvis TKL, Stubbe BG, Van Steenbergen MJ, Hennink WE, De Smedt SC, Demeester J (2002) A comparison between the use of dynamic mechanical analysis and oscillatory shear rheometry for the characterisation of hydrogels. Intern J Pharmaceutics 244:163–168

    Article  CAS  Google Scholar 

  15. Kulicke WM (1986) Fließverhalten von Stoffen und Stoffgemischen. Hüthig & Wepf, Basel

    Google Scholar 

  16. Bourne MC Food (2002) Texture and Viscosity: Concept and Measurement. Academic Press, San Diego

    Google Scholar 

  17. Teunou E, Fitzpatrick JJ, Synnott EC (1999) Characterisation of food powder flowability. J Food Engineering 39:31–37

    Article  Google Scholar 

  18. Escher F (1993) in: Jowitt R, Escher F, Hallström B, Meffert HFTh, Spiess WEL, Vos G (1983) Physical Properties of Food. Applied Science Publishers, Barking

    Google Scholar 

  19. Cuq B, Gonçalves F, Mas JF, Vareille L, Abecassis J (2003) Effects of moisture content and temperature of spaghetti on their mechanical properties. J Food Engineering 59:51–60

    Article  Google Scholar 

  20. Mancini M, Moresi M, Rancini R (1999) Mechanical properties of alginate gels: empirical characterisation. J Food Engineering 39:369–378

    Article  Google Scholar 

  21. Juszczak L, Witczak M, Fortuna T, Banys A (2004) Rheological properties of commercial mustards. J Food Engineering 61:209–217.

    Article  Google Scholar 

  22. Resch JJ, Daubert CR (2002) Rheological and physicochemical properties of derivatized whey protein concentrate powders. Intern J of Food Properties 5:419

    Article  CAS  Google Scholar 

  23. Gujral HS, Sharma A, Singh N (2002) Effect of hydrocolloids, storage temperature, and duration on the consistency of tomato ketchup. Intern J of Food Properties 5:179

    Article  CAS  Google Scholar 

  24. Haley TA, Smith RS (2003) Evaluation of in-line absorption photometry to predict consistency of concentrated tomato products. Lebensmittel Wissenschaft und Technologie 36:159–164

    Article  CAS  Google Scholar 

  25. Watanabe H, Qi Tang Cun, Toru Suzuki, Mihori T (1996) Fracture stress of fish meat and the glass transition. J Food Engineering 29:317–327

    Article  Google Scholar 

  26. Shellhammer TH, Rumsey TR, Krochta JM (1997) Viscoelastic properties of edible lipids. J Food Engineering 33:305–320

    Article  Google Scholar 

  27. Krokida M, Maroulis Z, Saravacos G (2001) Rheological properties of fluid fruit and vegetable puree products: compilation of literature data. Intern J of Food Properties 4:179

    Article  Google Scholar 

  28. Ma L, Barbosa-Cánovas GV (1995) Rheological characterization of mayonnaise. Part I: Slippage at different oil and xanthan gum concentrations. J Food Engineering 25:397–408

    Article  Google Scholar 

  29. Ma L, Barbosa-Cánovas GV (1995) Rheological characterization of mayonnaise. part II: flow and viscoelastic properties at different oil and xanthan gum concentrations. J Food Engineering 25:409–425

    Article  Google Scholar 

  30. Mario Yanes LD, Costell E (2002) Rheological and optical properties of commercial chocolate milk beverages. J Food Engineering 51:229–234

    Article  Google Scholar 

  31. Sopade PA, Halley PJ, Junming LL (2004) Gelatinization of starch in mixtures of sugars. I. Dynamic rheological properties and behaviors of starch-honey systems. J Food Engineering, 61:439–448

    Article  Google Scholar 

  32. Rose Ch (1999) Stabilitätsbeurteilung von O/W-Cremes auf Basis der wasserhaltigen hydrophilen Salbe DAB 1996. Dissertation, Technische Universität Braunschweig

    Google Scholar 

  33. Venugopal V, Muthukumarappan K (2001) Stress relaxation characteristics of cheddar cheese. Intern J Food Properties 4:469

    Article  Google Scholar 

  34. Kessler HG (1996) Technologische Beeinflussung funktioneller Eigenschaften von Molkenproteinen zur Gestaltung von Prozessen und Produkten. Proc. 54. Diskussionstagung FEI, Bonn p. 18–41

    Google Scholar 

  35. Grotte M, Duprat F, Piétri E, Loonis D (2002) Young’s modulus, Poisson’s ratio, and Lame’s coefficients of golden delicious apple. Intern J Food Properties 5:333

    Article  Google Scholar 

  36. Lewicki PP, Lukaszuk A (2000) Effect of osmotic dewatering on rheological properties of apple subjected to convective drying. J Food Engineering 45:119–126

    Article  Google Scholar 

  37. Schantz B, Linke L (2001) Messmethoden für Erstarrung und Kontraktion. Zucker-und Süßwarenwirtschaft 54(12):15–17

    Google Scholar 

  38. Ali A, Selamat J, Che Man YB, Suria AM (2001) Effect of storage temperature on texture, polymorphic structure, bloom formation and sensory attributes of filled dark chocolate. Food Chemistry 72:491–497

    Article  CAS  Google Scholar 

  39. Kim MH, Okos MR (1999) Some physical, mechanical, and transport properties of crackers related to the checking phenomenon. J Food Engineering 40:189–198

    Article  Google Scholar 

  40. García-Ramos FJ, Ortiz-Cañavate J, Ruiz-Altisent M, Díez J, Flores L, Homer I, Chávez JM (2003) Development and implementation of an on-line impact sensor for firmness sensing of fruits. J Food Engineering 58:53–57

    Article  Google Scholar 

  41. Adhikari B, Howes T, Bhandari B, Truong V (2001) Stickiness in foods: a review of mechanisms and test methods. Int J Food Properties 4:1

    Article  CAS  Google Scholar 

  42. Gunasekaran S, Ak MM (2000) Dynamic oscillatory shear testing of foods — selected applications. Trends in Food Science and Technology 11:115–127

    Article  CAS  Google Scholar 

  43. ASTM D7271 Standard Test Method for Viscoelastic Properties of Paste Ink Vehicle Using an Oscillatory Rheometer, in [132]

    Google Scholar 

  44. DIN EN 14770 (2006) Bitumen and bituminous binders — Determination of complex shear modulus and phase angle — Dynamic Shear Rheometer, in [101]

    Google Scholar 

  45. ISO 6721-10 (1999) Plastics — Determination of dynamic mechanical properties — Part 10: Complex shear viscosity using a parallel-plate oscillatory rheometer, in [101]

    Google Scholar 

  46. DIN 51562 (1999) Viscometry — Measurement of kinematic viscosity by means of the Ubbelohde viscometer, in [101]

    Google Scholar 

  47. DIN 51336 (1977) Testing of mineral oil hydrocarbons; measurement of kinematic viscosity by means of the Cannon-Fenske viscometer, in [101]

    Google Scholar 

  48. ISO 3105 (1994) Glass capillary kinematic viscometers — Specifications and operating instructions, in [101]

    Google Scholar 

  49. ASTM D 446 (2006) Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers, in [132]

    Google Scholar 

  50. ASTM D445 Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), in [132]

    Google Scholar 

  51. ISO 1628 (1999) Plastics — Determination of the viscosity of polymers in dilute solution using capillary viscometers, in [101]

    Google Scholar 

  52. DIN EN ISO 12058 (2002) Plastics — Determination of viscosity using a falling-ball viscometer, in [101]

    Google Scholar 

  53. DIN EN ISO 2431 (1996) Paints and varnishes — Determination of flow time by use of flow cups, in [101]

    Google Scholar 

  54. ASTMD 5125 (1997) Standard Test Method for Viscosityof Paints and Related Materials by ISO Flow Cup, in [132]

    Google Scholar 

  55. DIN 10331 (1996) Determination of the hardness of butter, in [101]

    Google Scholar 

  56. ISO 5530-1 (1997) Wheat flour — Physical characteristics of doughs — Part 1: Determination of water absorption and rheological properties using a farinograph, see [101]

    Google Scholar 

  57. ISO 5530-2 (1997) Wheat flour — Physical characteristics of doughs — Part 2: Determination of rheological properties using an extensograph, see [101]

    Google Scholar 

  58. ISO5530-3 (1988) Wheat flour; physical characteristics of doughs; part 3: determination of water absorption and rheological properties using a valorigraph, see [101]

    Google Scholar 

  59. BS ISO 5530-4 (2002) Wheat flour (Triticum aestivum L.) — Physical characteristics of doughs — Determination of rheological properties using an alveograph, see [101]

    Google Scholar 

  60. Jasim Ahmed and Hosahalli S. Ramaswamy (2007) Dynamic rheology and thermal transitions in meat-based strained baby foods. J Food Engineering 78:1274–1284

    Article  Google Scholar 

  61. LFGB method L57.12.15-1, micrcrystalline waxes — measurement of viscosity, in [100]

    Google Scholar 

  62. Ximenita I. Trejo Araya, Hendrickx M, Verlinden BE, Van Buggenhout S, Smale NJ, Stewart C, Mawson AJ (2007) Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. J Food Engineering 80:873–884

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Rheological Properties. In: Food Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34194-9_4

Download citation

Publish with us

Policies and ethics