Skip to main content

Comets, Titan and Mars: Astrobiology and Space Projects

  • Chapter
Lectures in Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

  • 1053 Accesses

13.5 Conclusion

To date, there is nothing that could allow us to figure out if we will ever know whether the Earth is the only inhabited planet in the universe. However, astrobiology has gone a long way since the very first experiments by Miller in 1950 and since then, questions related to astrobiology are feeding the exploration of our solar system, and even beyond with ambitious programs for the observation of extrasolar planets (TPF, Darwin). The answer is maybe already at hand, by a rock analyzed with a Martian rover, or further away, under a few kilometers of ice in the Jupiter neighborhood. . . This chapter deals with the preliminary steps of the astrobiological exploration of the solar system, we are currently witnessing. We focused on the search of organic matter and liquid water, but none of them is a clear indicator of past or present life. We did not discuss the next issue about measurement(s) (chemical, geological, spectroscopic), which could allow us to claim that we have finally detected life on another planet. The scientific debate about it is still at its very first stages, and opens the most fascinating prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altwegg, K., H. Balsiger, and J. Geiss, Composition of the volatile material in Halley’s coma from in situ measurements, Space Science Reviews, 90, 3–18, 1999.

    Google Scholar 

  • Atreya, S.K., T.M. Donahue, and W.R. Kuhn, Evolution of a nitrogen atmosphere on Titan, Science, 201, 611–613, 1978.

    Google Scholar 

  • Barbier, B., A. Chabin, D. Chaput, and A. Brack, Photochemical processing of amino acids in Earth orbit, Planetary and Space Science, 46(4), 391–398, 1998.

    Google Scholar 

  • Barbier, B., O. Henin, F. Boillot, A. Chabin, D. Chaput, and A. Brack, Exposure of amino acids and derivatives in the Earth orbit, Planetary and Space Science, 50, 353–359, 2002.

    Google Scholar 

  • Bernstein, M.P., S.A. Sandford, L.J. Allamandola, S. Chang, and M.A. Scharberg, Organic Compounds Produced By Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol, The Astrophysical Journal, 454, 327–344, 1995.

    Google Scholar 

  • Bibring, J.P., Y. Langevin, F. Poulet, A. Gendrin, B. Gondet, M. Berthé, A. Soufflot, P. Drossart, M. Combes, G. Bellucci, V. Moroz, N. Mangold, B. Schmitt, and the OMEGA team, Perennial water ice identified in the south polar cap of Mars, Nature, 428,6983, 627–630, 2004.

    Google Scholar 

  • Biemann, K., J. Oro, P. Toulmin, L.E. Orgel, A.O. Nier, D.M. Anderson, D. Flory, A.V. Diaz, D.R. Rushneck, and P.G. Simmonds, The search for organic substances and inorganic volatile compounds in the surface of Mars, Journal of Geophysical Research, 82, 4641–4658, 1977.

    Google Scholar 

  • Bland, P.A., T.B. Smith, A.J.T. Jull, F.J. Berry, A.W.R. Bevan, S. Cloudt, and C.T. Pillinger, The flux of meteorites to the Earth over the last 50 000 years, Monthly Notices of the Royal Astronomical Society, 283, 551, 1996.

    Google Scholar 

  • Blank, J.G., G.H. Miller, M.J. Ahrens, and R.E. Winans, Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds, Origins of Life and Evolution of the Biosphere, 31, 15–51, 2001.

    Google Scholar 

  • Bockelée-Morvan, D., D. Gautier, F. Hersant, J.-M. Huré, and F. Robert, Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets, Astronomy and Astrophysics, 384, 1107–1118, 2002.

    Google Scholar 

  • Bockelée-Morvan, D., J. Crovisier, M.J. Mumma, and H.A. Weaver, The composition of cometary volatiles, In: Comets II, edited by M. Festou, H.U. Keller, and H.A. Weaver, University of Arizona Press, Tucson, AZ, 2004.

    Google Scholar 

  • Boillot, F., A. Chabin, C. Buré, M. Venet, A. Belsky, M. Bertrand-Urbaniak, A. Delmas, A. Brack, and B. Barbier, The Perseus exobiology mission on MIR: behavior of amino acids and peptides in Earth orbit, Origins of Life and Evolution of the Biosphere, 32, 359–385, 2002.

    Google Scholar 

  • Botta, O., and J.L. Bada, Extraterrestrial organic compounds in meteorites, Surveys in Geophysics, 23, 411–467, 2002.

    Google Scholar 

  • Brack, A., La chimie de l’origine de la vie, In: Les traces du vivant, edited by M. Gargaud, D. Despois, J.-P. Parisot, and J. Reisse, pp. 61–81, Presses Universitaires de Bordeaux, Bordeaux, 2003.

    Google Scholar 

  • Broadfoot, A.L., B.R. Sandel, D.E. Shemansky, J.B. Holberg, G.R. Smith, D.F. Strobel, J.C. McConnell, S. Kumar, D.M. Hunten, S.K. Atreya, T.M. Donahue, H.W. Moos, J.L. Bertaux, J.E. Blamont, R.B. Pomphrey and S. Linick, Science, 212, 206–211, 1981.

    Google Scholar 

  • Cabane, M., P. Coll, C. Szopa, G. Israël, F. Raulin, R. Sternberg, P. Mahaffy, A. Person, C. Rodier, R. Navarro-Gonzàlez, H. Niemann, D. Harpold, W. Brinckerhoff, Did life exist on Mars? Search for organic and inorganic signatures, one of the goals for “SAM” (sample analysis at Mars), Advances in Space Research, 33,12, 2240–2245. 2004.

    Google Scholar 

  • Caldwell, J.J., Ultraviolet observations of small bodies in the solar system by OAO-2, Icarus, 25, 384–396, 1975.

    Google Scholar 

  • Carr, M.H., M.J.S. Belton, C.R. Chapman, M.E. Davies, P. Geissler, R. Greenberg, A.S. McEwen, B.R. Tufts, R. Greeley, and R. Sullivan, Evidence for a subsurface ocean on Europa, Nature, 391, 363, 1998.

    Google Scholar 

  • Christensen, P.R. et al., Detection of crystalline hematite mineralization onMars by the Thermal Emission Spectrometer, Journal of Geophysical Research, 105, 9632–9642, 2000.

    Google Scholar 

  • Christensen, P.R., and S.W. Ruff, Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water. Journal of Geophysical Research, 109, E8, 2004.

    Google Scholar 

  • Chyba, C.F., P.J. Thomas, L. Brookshaw, and C. Sagan, Cometary delivery of organic molecules to the early earth, Science, 249 (July), 249–373, 1990.

    Google Scholar 

  • Clancy, R.T., B.J. Sandor, and G.H. Moriarty-Schieven, A measurement of the 362GHz absorption line of Mars atmospheric H2O2. Icarus, 168,1, 116–121, 2004.

    Google Scholar 

  • Conklin, E.K., B.L. Ulich and J.R. Dickel, 3-mm Observations of Titan, Bulletin American Astronomical Society, 9, 471, 1977.

    Google Scholar 

  • Corliss, J.B., J.A. Baross, and S.E. Hoffman, An hypothesis concerning the relationship between submarine hot spring and the origin of life on Earth, Oceanologica Acta, No SP, Proceedings of the 26th Geological Congress, 59–69, 1981.

    Google Scholar 

  • Cottin, H., C. Szopa, and M.H. Moore, Production of hexamethylenetetramine in photolyzed and irradiated interstellar cometary ice analogs, The Astrophysical Journal Letters, 561(1), L139–L142, 2001.

    Google Scholar 

  • Cottin, H., Y. Bénilan, M.-C. Gazeau, and F. Raulin, Origin of cometary extended sources from degradation of refractory organics on grains: polyoxymethylene as formaldehyde parent molecule, Icarus, 167, 397–416, 2004.

    Google Scholar 

  • Coustenis, A., A. Salama, E. Lellouch, T. Encrenaz, G.L. Bjoraker, R.E. Samuelson, T. de Graauw, H. Feuchtgruber, M.F. Kessler, Astronomy and Astrophysics, 336, L85–L89, 1998.

    Google Scholar 

  • Cronin, J.R., and S. Pizzarello, Enatiomeric excesses in meteoritic amino acids, Science, 275 (14 February), 951–955, 1997.

    Google Scholar 

  • Curran, R.J., B.J. Conrath, R.A. Hanel, V.G. Kunde, and J.C Pearl, Mars: Mariner 9 spectroscopic evidence for H2O ice clouds, Science 175, 381–383, 1973.

    Google Scholar 

  • Danielson, R.E., J.J. Caldwell and D.R. Larach, An inversion in the atmosphere of Titan, Icarus, 20, 437–443, 1973.

    Google Scholar 

  • Despois, D., and H. Cottin, Comets: potential sources of prebiotic molecules for the early Earth, In: Lectures in Astrobiology I, chap. 8, edited by M. Gargaud, B. Barbier, H. Martin, and J. Reisse, Springer, Berlin Heidelberg New York, 2005.

    Google Scholar 

  • Despois, D., Les comètes, sources potentielles de molécules pour la terre primitive et les planètes, In: L’environnement de la Terre Primitive, edited by M. Gargaud, D. Despois, and J.-P. Parisot, pp. 53–77, Presses Universitaires de Bordeaux, Bordeaux, 2001.

    Google Scholar 

  • Eberhardt, P., and D. Krankowsky, The electron temperature in the inner coma of comet P/Halley, Astronomy and Astrophysics, 295, 795, 1995.

    Google Scholar 

  • Ehrenfreund, P., and S.B. Charnley, Organic molecules in the interstellar medium, comets and meteorites: a voyage from dark clouds to the early earth, Annual Review of Astronomy and Astrophysics, 38, 427–483, 2000.

    Google Scholar 

  • Encrenaz, T., B. Bézard, T.K. Greathouse, M.J. Richter, J.H. Lacy, S.K. Atreya, A S. Wong, S. Lebonnois, F. Lefèvre, and F. Forget. Hydrogen peroxide on Mars: evidence for spatial and temporal variations, Icarus 170, 424–429, 2004.

    Google Scholar 

  • Esposito, L.W., et al., The Cassini ultraviolet imaging spectrograph investigation, Space Science Reviews, 115(1–4), 299–361, 2004.

    Google Scholar 

  • Fairén, A.G., D. Fernández-Remolar, J.M. Dohm, V.R. Baker, and R. Amils, Inhibition of carbonate synthesis in acidic oceans on early Mars, Nature, 431,7007, 423–426, 2004.

    Google Scholar 

  • Flasar, M., et al., Exploring the Saturn system in the thermal infrared: the composite infrared spectrometer, Space Science Reviews, 115(1–4), 169–297, 2004.

    Google Scholar 

  • Formisano, V., S. Atreya, T. Encrenaz, N. Ignatiev, and M. Giuranna, Detection of methane in the martian atmosphere, Science, 306, 1756–1761, 2004.

    Google Scholar 

  • Forterre, P., A la recherche des formes de vie terrestre les plus “primitives”: impasses et progrès, In: L’environnement de la Terre Primitive, edited by M. Gargaud, D. Despois, and J.-P. Parisot, pp. 399–416, Presses Universitaires de Bordeaux, Bordeaux, 2001.

    Google Scholar 

  • Fortes, A.D., Exobiological implications of a possible ammonia-water ocean inside Titan, Icarus, 146, 444–452, 2000.

    Google Scholar 

  • Fulchignoni, M., F. Angrilli, G. Bianchini, A. Bar-Nun, M.A. Barucci, W. Borucki, M. Coradini, A. Coustenis, F. Ferri, R.J. Grard, M. Hamelin, A.M. Harri, G.W. Leppelmeier, J.J. Lopez-Moreno, J.A.M. McDonnell, C. McKay, F.M. Neubauer, A. Pederson, G. Picardi, V. Pironello, R. Pirjola, R. Rodrigo, C. Sshwingenschuh, A. Seiff, H. Svedhem, E. Thrane, V. Vanzani, G. Visconti and J.C. Zarnecki., Huygens: Science, payload and Mission, ESA SP-1177, 163–195, 1997.

    Google Scholar 

  • Geiss, J., K. Altwegg, H. Balsiger, and S. Graf, Rare atoms, molecules and radicals in the coma of P/Halley, Space Science Reviews, 90, 253–268, 1999.

    Google Scholar 

  • Gendrin, A., J.P. Bibring, B. Gondet, Y. Langevin, N. Mangold, J.F. Mustard, F. Poulet, and C. Quantin. Identification of sulfate deposits on Mars by Omega/Mars Express. Proceedings of the 2nd Conference on Early Mars, 11–15 October 2004, Jackson Hole, WY.

    Google Scholar 

  • Gillett, F.C., Further observations of the 8–13 micron spectrum of Titan, The Astrophysical Journal, 201, L41–L43, 1975.

    Google Scholar 

  • Gillett, F.C., W.J. Forrest and K.M. Merrill, 8–13 Micron Observations of Titan, The Astrophysical Journal, 184, L93–L95, 1973.

    Google Scholar 

  • Greenberg, J.M., What are comets made of? A model based on interstellar dust, In: Comets, edited by L.L. Wilkening, pp. 131–163, University of Arizona Press, Tucson, AZ, 1982.

    Google Scholar 

  • Hanel, R., B. Conrath, F.M. Flasar, V. Kunde, W. Maguire, J. Pearl, J. Pirriglia, R. Samuelson, L. Herath, M. Allison, D. Cruikshank, D. Gautier, P. Gierasch, L. Horn, R. Koppany, and C. Ponnamperuma, Science, 212, 192–200, 1981.

    Google Scholar 

  • Hanel, R., B. Conrath, W. Hovis, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Prabhakara, and B. Schlachman, Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus 17, 423–442, 1972.

    Google Scholar 

  • Hennet, R.J.C., N.G. Holm, and M.H. Engel, Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon, Naturwissenschaften, 79, 361–365, 1992.

    Google Scholar 

  • Herr, K.C., G.C. Pimental, Infrared absorptions near three microns recorded over the polar CAP of Mars, Science, 166, 496–499, 1969.

    Google Scholar 

  • Hersant, F., D. Gautier, and J.-M. Huré, A two-dimensional model for the primordial nebula constrained by D/H measurements in the solar system: implications for the formation of giant planets, Astrophysical Journal, 554, 391–407, 2001.

    Google Scholar 

  • Horowitz, N.H., G.L. Hobby, J.S. Hubbard, Viking on Mars: the carbon assimilation experiments, Journal of Geophysical Research, 82, 4659–4662, 1977.

    Google Scholar 

  • Huebner, W.F., D.C. Boice, and A. Korth, Halley’s polymeric organic molecules, Advances in Space Research, 9(2), 29–34, 1989.

    Google Scholar 

  • Huebner, W.F., First polymer in space identified in Comet Halley, Science, 237, 628–630, 1987.

    Google Scholar 

  • Huguenin, R.L., K.J. Miller, W.S. Harwood, Frost-weathering on Mars: experimental evidence for peroxide formation, Journal of Molecular Evolution, 14, 103–132, 1979.

    Google Scholar 

  • Hunten, D.M., The Saturn System, edited by D.M. Hunten and D. Morison, NASACP 2068, 113–126, 1978.

    Google Scholar 

  • Iro, N., D. Gautier, F. Hersant, D. Bockelée-Morvan, and J.I. Lunine, An interpretation of the nitrogen deficiency in comets, Icarus, 161, 511–532, 2003.

    Google Scholar 

  • Israel, G., H. Niemann, F. Raulin, W. Riedler, S. Atreya, S. Bauer, M. Cabane, E. Chassefière, A. Hauchecorne, T. Owen, C. Sablé, R. Samuelson, J.P. Torre, C. Vidal-Majar, J.F. Brun, D. Coscia, R. Ly, M. Tintignac, M. Steller, C. Gelas, E. Condé, and P. Millan, Huygens: science, payload and mission, ESA SP-1177, 59–84, 1997.

    Google Scholar 

  • Kasting, J.F., Earth’s early atmosphere, Science, 259, 920–926, 1993.

    Google Scholar 

  • Khare, B.N. and C. Sagan, Red clouds in reducing atmospheres, Icarus, 20, 311, 1973.

    Google Scholar 

  • Kissel, J., and F.R. Krueger, The organic component in dust from Comet Halley as mesured by the PUMA mass spectrometer on board Vega 1, Nature, 326 (April), 755–760, 1987.

    Google Scholar 

  • Kissel, J., F.R. Krueger, J. Silén, and B.C. Clark, The cometary and interstellar dust analyzer at comet 81P/Wild 2, Science, 304, 1774–1776, 2004.

    Google Scholar 

  • Kivelson, M.G., K.K. Khurana, C.T. Russell, M. Volwerk, R.J. Walker, and C. Zimmer, Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa, Science, 289, 1340–1343, 2000.

    Google Scholar 

  • Klein, H.P., The Viking biological experiments on Mars, Icarus, 34,3, 666–674, 1978.

    Google Scholar 

  • Klein, H.P., J. Lederberg, A. Rich, Biological experiments: the Viking Mars Lander, Icarus, 16, 139, 1972.

    Google Scholar 

  • Kliore, A., D.L. Cain, G.S. Levy, V.R. Eshleman, G. Fjeldbo, and F.D. Drake, Occultatio experiment: results of the first direct measurement of Mars’s atmosphere and ionosphere, Science, 149, 1243–1248, 1965.

    Google Scholar 

  • Krasnopolsky, V.A., J.-P. Maillard, and T. Owen. Detection of methane in the martian atmosphere: evidence for life? Icarus 172, 537–547, 2004.

    Google Scholar 

  • Krueger, F.R., A. Korth, and J. Kissel, The organic matter of comet Halley as inferred by joint gas phase and solid phase analyses, Space Science Reviews, 56, 167–175, 1991.

    Google Scholar 

  • Krueger, F.R., and J. Kissel, The chemical composition of the dust of comet P/Halley as measured by PUMA on board Vega 1, Naturwissenschaften, 74, 312–316, 1987.

    Google Scholar 

  • Kunde, V.G., A.C. Ainkin, R.A. Hanel, D.E. Jennings, W.C. Maguire, and R.E. Samuelson, Nature, 292, 686–688, 1981.

    Google Scholar 

  • Lebreton, J.P., and D. Matson, Huygens: science, payload and mission, ESA SP-1177, 1997.

    Google Scholar 

  • Levin, G.V., P.A. Straat, A search for a nonbiological explanation of the Viking labeled release life detection experiment. Icarus, 45,2, 494–516, 1981.

    Google Scholar 

  • Lindal, G.F., G.E. Wood, H.B. Hotz, D.N. Sweetnam, V.R. Eshleman and G.L. Tyler, Icarus, 53, 348–363, 1983.

    Google Scholar 

  • Lorenz, R.D., Exo-/astrobiology. Proceedings of the 1st European Workshop, ESA SP-496, 215–218, 2001.

    Google Scholar 

  • Low, F.J., Planetary radiation at infrared and millimeter wavelengths, Lowell Observatory Bulletin, 6(128), 184–187, 1965.

    Google Scholar 

  • Lunine, J.I., S. Engel, R. Bashar, and M. Horanyi, Sublimation and reformation of icy grains in the primitive solar nebula, Icarus, 94, 333–344, 1991.

    Google Scholar 

  • Lutz, B.L., C. de Bergh and T. Owen, Titan: discovery of carbon monoxide in its atmosphere, Science, 220, 1374–1375, 1983.

    Google Scholar 

  • Maguire, W.C., R.A. Hanel, D.E. Jennings, V.G. Kunde and R.E. Samuelson, Nature, 292, 683–686, 1981.

    Google Scholar 

  • Marten, A., D. Gautier, L. Tanguy, A. Lecacheux, C. Rosolen and G. Paubert, Icarus, 76, 558–562, 1988.

    Google Scholar 

  • Maurette, M., Carbonaceous micrometeorites and the origin of life, origins of life and evolution of the biosphere, Origins of Life and Evolution of the Biosphere, 28, 385–412, 1998.

    Google Scholar 

  • Maurette, M., La matière extraterrestre primitive et les mystère de nos origines, In: L’environnement de la Terre Primitive, edited by M. Gargaud, D. Despois, and J.-P. Parisot, pp. 99–127, Presses Universitaires de Bordeaux, Bordeaux, 2001.

    Google Scholar 

  • McCord, T.B., G.B. Hansen, and C.A. Hibbitts, Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below, Science, 292, 1523–1525, 2001.

    Google Scholar 

  • McCord, T.B., G.B. Hansen, D.L. Matson, T.V. Jonhson, J.K. Crowley, F.P. Fanale, R.W. Carlson, W.D. Smythe, P.D. Martin, C.A. Hibbitts, J.C. Granahan, and A. Ocampo, Hydrated salt minerals on Europa’s surface from the Galileo nearinfrared mapping spectrometer (NIMS) investigation, Journal of Geophysical Research, 104, 11827–11852, 1999.

    Google Scholar 

  • Meier, R., P. Eberhardt, D. Krankowsky, and R.R. Hodges, The extended formaldehyde source in comet P/Halley, Astronomy and Astrophysics, 277, 677–691, 1993.

    Google Scholar 

  • Meierhenrich, U.J., G.M.M. Caro, J.H. Bredehöft, E.K. Jessberger, and W.H.-P. Thiemann, Identification of diamino acids in the Murchison meteorite, Proceedings of the National Academy of Sciences, 101, 9182–9186, 2004.

    Google Scholar 

  • Miller, S.L., The production of amino acids under possible primitive Earth conditions, Science, 117, 528–529, 1953.

    Google Scholar 

  • Mitchell, D.L., R.P. Lin, C.W. Carlson, A. Korth, H. Rème, and D.A. Mendis, The origin of complex organic ions in the coma of comet Halley, Icarus, 98, 125–133, 1992.

    Google Scholar 

  • Mitrofanov et al., Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey, Science, 297, 78–81, 2002.

    Google Scholar 

  • Möller, G., and W.M. Jackson, Laboratory studies of polyoxymethylene: application to comets, Icarus, 86, 189–197, 1990.

    Google Scholar 

  • Moore, M.H., and T. Tanabe, Mass spectra of sputtered polyoxymethylene: implications for comets, The Astrophysical Journal, 365, 1990.

    Google Scholar 

  • Moore, J.M., Mars blueberry fields for ever, Nature, 428,6984, 711–712, 2004.

    Google Scholar 

  • Mumma, M.J., R.E. Novak, M.A. Di Santi, B.P. Bonev, N. Dello Russio, Detection and mapping of methane and water on Mars, Bulletin American Astronomical Society, 36, 1127–1127, 2004.

    Google Scholar 

  • Muñoz Caro, G.M., and W.A. Schutte, UV-photoprocessing of interstellar ice analogs: new infrared spectroscopic results, Astronomy and Astrophysics, 412, 121–132, 2003.

    Google Scholar 

  • Ness, F.N., M.H. Acuña, R.P. Lepping, J.E.P. Connerney, K.W. Behannon, L.F. Burlaga and F.M. Neubaueur, Magnetic field studies by Voyager 1: preliminary results at Saturn, Science, 212, 211–216, 1981.

    Google Scholar 

  • Neugebauer, G., G. Miinch, H. Kieffer, S.C. Chase, and E. Miner, Mariner 1969 infrared radiometer results: temperatures and thermal properties of the Martian surface. The Astronomical Journal, 76, 719, 1971.

    Google Scholar 

  • Niemann, H. et al., Huygens: science, payload and mission, ESA SP-1177, 85–107, 1997.

    Google Scholar 

  • Oro, J., and C.B. Cosmovici, Comets and life on the primitive Earth, in astronomical and biochemical origins and the search for life in the universe, edited by C.B. Cosmovici, S. Bowyer, and D. Werthimer, pp. 97–120, Proceedings of the 5th International Conference on Bioastronomy, Bologna, Italy, 1997.

    Google Scholar 

  • Oyama, V.I., B.J. Berdahl, The Viking gas exchange experiment results from Chryse and Utopia surface samples, Journal of Geophysical Research, vol. 82, 4669–4676, 1977.

    Google Scholar 

  • Pierazzo, E., and C.F. Chyba, Cometary delivery of biogenic elements to Europa, Icarus, 157, 120–127, 2002.

    Google Scholar 

  • Pizzarello, S., and J.R. Cronin, Non-racemic amino acids in the Murray and Murchison meteorites, Geochimica et Cosmochimica Acta, 64, 329–338, 2000.

    Google Scholar 

  • Podolak, M., and D. Prialnik, 26-Al and liquid water environments in comets, In: Comets and the Origin and Evolution of Life, edited by P.J. Thomas, C.F. Chyba, and C.P. McKay, Springer, Berlin Heidelberg New York, 1997.

    Google Scholar 

  • Pollack, J.B., Greenhouse models of the atmosphere of Titan, Icarus, 19, 43–58, 1973.

    Google Scholar 

  • Prinn, R.G., and B.J. Fegley, Solar nebula chemistry: origin of planetary, satellite and cometary volatiles, In: Origin and Evolution of Planetary and Satellite Atmospheres, edited by S.K. Atreya, J.B. Pollack, and M. Matthews, pp. 78–136, University Of Arizona Press, Tuscon, AZ, 1989.

    Google Scholar 

  • Raulin, F., Huygens: science, payload and mission, ESA SP-1177, 219–229, 1997.

    Google Scholar 

  • Raulin, F., Chimie prébiotique: expériences de simulation en laboratoire et “vérité terrain”, In: L’environnement de la Terre Primitive, edited by M. Gargaud, D. Despois, and J.-P. Parisot, pp. 343–360, Presses Universitaires de Bordeaux, Bordeaux, 2001.

    Google Scholar 

  • Reisse, J., and J. Cronin, Chiralité et origine de l’homochiralité, In: Les traces du vivant, edited by M. Gargaud, D. Despois, J.-P. Parisot, and J. Reisse, pp. 83–113, Presses Universitaires de Bordeaux, Bordeaux, 2003.

    Google Scholar 

  • Rodier, C., O. Vandenabeele-Trambouze, R. Sternberg, D. Coscia, P. Coll, C. Szopa, F. Raulin, C. Vidal-Madjar, M. Cabane, G. Israel, M.F. Grenier-Loustalot, M. Dobrijevic, and D. Despois, Detection of martian amino acids by chemical derivatization coupled to gas chromatography: in situ and laboratory analysis, Advances in Space Research, 27, 195–199, 2001.

    Google Scholar 

  • Rosenbauer, H., S.A. Fuselier, A. Ghielmetti, J.M. Greenberg, F. Goesmann, S. Ulamec, G. Israel, S. Livi, J.A. MacDermott, T. Matsuo, C.T. Pillinger, F. Raulin, R. Roll, and W. Thiemann, The Cosac experiment on the lander of the Rosetta mission, Advances in Space Research, 23, 333–340, 1999.

    Google Scholar 

  • Samuelson, R.E., W.C. Maguire, R.A. Hanel, V.G. Kunde, D. Jennings, Y.L. Yung and A.C. Aikin, CO2 on Titan, Journal of Geophysical Research, 88, 8709–8715, 1983.

    Article  Google Scholar 

  • Schenk, P.M., Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes, Nature, 417, 419–421, 2002.

    Google Scholar 

  • Selsis, F., and J.-P. Parisot, L’atmosphère primitive de la Terre et son évolution, In: L’environnement de la Terre Primitive, edited by M. Gargaud, D. Despois, and J.-P. Parisot, pp. 217–233, Presses Universitaires de Bordeaux, Bordeaux, 2001.

    Google Scholar 

  • Smith, B.A., J. Boyce, G. Briggs, A. Bunker, S.A. Collins, C.J. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, M. Carr, A.F. Cook II, J. Cuzzi, J.M. Pollack, G.E. Danielson, A. Ingersoll, M.E. Davies, G.E. Hunt, H. Masursky, E. Shoemaker, D. Morrison, T. Owen, C. Sagan, J. Veverka, R. Strom and V.E. Suomi, Encounter with Saturn: Voyager 1 imaging science results, Science, 212, 163–191, 1981.

    Google Scholar 

  • Smith, G.R., D.F. Strobel, A.L. Bradfoot, B.L. Sandel, D.E. Shemansky and J.B. Holberg, Titan’s upper atmosphere: composition and temperature from the EUV solar occultation results, Journal Geophyical Research, 87, 1351–1359, 1982.

    Google Scholar 

  • Sotin, C., J.W. Head, and G. Tobie, Europa: tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting, Geophysical Research Letters, 29, 74–1, 2002.

    Google Scholar 

  • Stoks, P.G., and A.W. Schwartz, Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation, Geochimica et Cosmochimica Acta, 45, 563–569, 1981.

    Google Scholar 

  • Stoks, P.G., and A.W. Schwartz, Uracil in carbonaceous meteorites, Nature, 282, 709–710, 1979.

    Google Scholar 

  • Stone, E.C. and E.D. Miner, Voyager 1 encounter with the Saturnian system, Science, 212, 159–163, 1981.

    Google Scholar 

  • Strobel, D.F. and D.E. Shemansky, EUV emission from Titan’s upper atmosphere: Voyager 1 encounter, Journal of Geophysical Research, 87, 1361–1368, 1982.

    Google Scholar 

  • Strobel, D.F., The photochemistry of hydrocarbons in the atmosphere of Titan, Icarus, 21, 466–470, 1974.

    Google Scholar 

  • Szopa, C., R. Sternberg, F. Raulin, and H. Rosenbauer, What can we expect from the in situ chemical investigation of a cometary nucleus by gas chromatography: first results from laboratory studies, Planetary and Space Science, 51, 863–877, 2003.

    Google Scholar 

  • Thomas, G.E., Neutral composition of the upper atmosphere of Mars as determined from the Mariner UV spectrometer experiments, Journal of Atmospheric Sciences, 28,6, 859–868, 1971.

    Google Scholar 

  • Thompson, W.R., and C. Sagan, Symposium on Titan, ESA SP, 167–176, 1991.

    Google Scholar 

  • Tomasko, M.G. et al., Huygens: science, payload and mission, ESA SP-1177, 109–138, 1997.

    Google Scholar 

  • Trafton, L.M., On the possible detection of tikya in Titan’s atmosphere, The Astrophysical Journal, 175, 285–293, 1972a.

    Google Scholar 

  • Trafton, L.M., The bulk composition of Titan’s atmosphere, The Astrophysical Journal, 175, 295–306, 1972b.

    Google Scholar 

  • Tyler, G.L., V.R. Eshleman, J.D. Anderson, G.S. Levy, G.S. Lindal, G.E. Wood and T.A. Croft, Radio science investigations of the Saturn system with Voyager 1: preliminary results, Science, 212, 201–206, 1981.

    Google Scholar 

  • Veverka, J., Titan: polarimetric evidence for an optically thick atmosphere, Icarus, 18, 657–660, 1973.

    Google Scholar 

  • Whipple, F.L., A comet model. I. The acceleration of Comet Encke, The Astrophysical Journal, 111, 375–394, 1950.

    Google Scholar 

  • Wolman, Y., S.L. Miller, J. Ibanez, and J. Oro, Science, 174, 1039, 1971.

    Google Scholar 

  • Yanagawa, H., and K. Kobayashi, An experimental approach to chemical evolution in submarine hydrothermal systems, Origins of Life and Evolution of the Biosphere, 22, 147–159, 1992.

    Google Scholar 

  • Yen, A.S., S.S. Kim, M.H. Hecht, M.S. Frant, B. Murray, Evidence that the reactivity of the Martian soil Is due to superoxide ions, Science, 289,5486, 1909–1912, 2000.

    Google Scholar 

  • Zarnecki, J.C., M. Banaszkiewicz, M. Bannister, W.V. Boynton, P. Challenor, B. Clark, P.M. Daniell, J. Delderfield, M.A. English, Fulchignoni, M., J.R.C. Garry, J.E. Geake, S.F. Green, B. Hathi, S. Jaroslawski, M.R. Leese, R.D. Lorenz, J.A.M. McDonnell, N. Merrywether-Clarke, C.S. Mill, R.J. Miller, G. Newton, D.J. Parker, P. Rabetts, H. Svedhem, R.F. Turner and M.J. Wright, Huygens: science, payload and mission, ESA SP-1177, 177–195, 1997.

    Google Scholar 

  • Zellner, B., The polarization of Titan, Icarus, 18, 661–664, 1973.

    Google Scholar 

  • Zent, A.P., On the thickness of the oxidized layer of the Martian regolith. Journal of Geophysical Research, 103, E13, 31491–31498, 1998.

    Google Scholar 

  • Zimmer, C., K.K. Khurana, and M.G. Kivelson, Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations, Icarus, 147, 329–347, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bénilan, Y., Cottin, H. (2007). Comets, Titan and Mars: Astrobiology and Space Projects. In: Gargaud, M., Martin, H., Claeys, P. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33693-8_13

Download citation

Publish with us

Policies and ethics