Skip to main content

New Perspectives in Stargardt’s Disease

  • Chapter
Book cover Medical Retina

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 999 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaberg TM (1986) Stargardt’s disease and fundus flavimaculatus: evaluation of morphologic progression and intrafamilial co-existence. Trans Am Ophthalmol Soc 84:453–487

    PubMed  CAS  Google Scholar 

  2. Allikmets R et al (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong JD et al (1998) Ophthalmology 105:448–458

    Article  PubMed  CAS  Google Scholar 

  4. Beharry S, Zhong M, Molday RS (2004) N-Retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptorspecific ABC transporter ABCA4 (ABCR). J Biol Chem 52:53972–53979

    Article  CAS  Google Scholar 

  5. Birnbach CD et al (1994) Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 101:1211–1219

    PubMed  CAS  Google Scholar 

  6. Blacharski PA (1988) Fundus flavimaculatus. In: Newsome DA (ed) Retinal dystrophies and degenerations. Raven, New York, pp 135–159

    Google Scholar 

  7. Bonnin P (1971) Le signe du silence choroidien dans les degenerescences tapeto-retiniennes centrales examinees sous fluoresceine. Bull Soc Ophthalmol Fr 71:1423–1427

    Google Scholar 

  8. Briggs CE et al (2001) Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration. Invest Ophthalmol Vis Sci 42:2229–2236

    PubMed  CAS  Google Scholar 

  9. Bungert S, Molday LL, Molday RS (2001) Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. J Biol Chem 276:23539–23546

    Article  PubMed  CAS  Google Scholar 

  10. Carr RE (1965) Fundus flavimaculatus. Arch Ophthalmol 74:163–168

    PubMed  CAS  Google Scholar 

  11. De Laey JJ, Verougstraete C (1995) Hyperlipofuscinosis and subretinal fibrosis in Stargardt’s disease. Retina 15:399–406

    Article  PubMed  Google Scholar 

  12. Del Buey ME et al (1993) Posttraumatic reaction in a case of fundus flavimaculatus with atrophic macular degeneration. Ann Ophthalmol 25:219–221

    PubMed  Google Scholar 

  13. Delori FC et al (1995) In vivo measurement of lipofuscin in Stargardt’s disease-Fundus flavimaculatus. Invest Ophthalmol Vis Sci 36:2327–2331

    PubMed  CAS  Google Scholar 

  14. Eagle RCJ et al (1980) Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study. Ophthalmology 87:1189–1200

    PubMed  Google Scholar 

  15. Eldred GE, Lasky MR (1998) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    Article  Google Scholar 

  16. Ergun E et al (2005) Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci, 46:310–316

    Article  PubMed  Google Scholar 

  17. Fishman GA (1976) Fundus flavimaculatus. Arch Ophthalmol 94:2061–2067

    PubMed  CAS  Google Scholar 

  18. Fishman GA et al (1987) Visual acuity loss in patients with Stargardt’s macular dystrophy. Ophthalmology 94:809–814

    PubMed  CAS  Google Scholar 

  19. Fishman GA et al (1999) Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol 117:504–510

    PubMed  CAS  Google Scholar 

  20. Fishman GA, Farbman JS, Alexander KR (1991) Delayed rod dark adaptation in patients with Stargardt’s disease. Ophthalmology 98:957–962

    PubMed  CAS  Google Scholar 

  21. Franceschetti A. (1963) über tapeto-retinale Degenerationen im Kindesalter (Kongenitale Form (Leber), amaurotische Idiotie, rezessivegeschlechtsgebundene tapeto-retinale Degenerationen, Fundus albipunctatus cum Hemeralopia, Fundus flavimaculatus). Dritter Fortbildungskurs der Deutschen Ophthalmologischen Gesellschaft, Hamburg 1962, herausgegeben von Prof. Dr. H. Sautter., in Entwicklung und Fortschritt in der Augenheilkunde. Funke, Stuttgart, pp 107–120

    Google Scholar 

  22. Franceschetti A (1965) A special form of tapetoretinal degeneration: fundus flavimaculatus. Trans Am Acad Ophthalmol Otolaryngol 69:1048–1053

    PubMed  CAS  Google Scholar 

  23. Franceschetti A, Francois J (1965) Fundus flavimaculatus. Arch Ophthalmol 25:505–530

    CAS  Google Scholar 

  24. Fukui T et al (2002) ABCA4 gene mutations in Japanese patients with Stargardt’s disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci 43:2819–2824

    PubMed  Google Scholar 

  25. Hadden OB, Gass JDM (1976) Fundus flavimaculatus and Stargardt’s disease. Am J Ophthalmol 82:527–539

    PubMed  CAS  Google Scholar 

  26. Holz FG et al (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40:737–743

    PubMed  CAS  Google Scholar 

  27. Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310

    Article  PubMed  CAS  Google Scholar 

  28. Irvine AR, Wergeland FLJ (1972) Stargardt’s hereditary progressive macular degeneration. Br J Ophthalmol 56:817–826

    Article  PubMed  CAS  Google Scholar 

  29. Kang Derwent JJ et al (2004) Dark adaptation of rod photoreceptors in normal subjects, and in patients with Stargardt’s disease and an ABCA4 mutation. Invest Ophthalmol Vis Sci 45:2447–2456

    Article  PubMed  Google Scholar 

  30. Kaplan J et al (1993) A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nat Genet 5:308–311

    Article  PubMed  CAS  Google Scholar 

  31. Klein R et al (1978) Subretinal neovascularization associated with fundus flavimaculatus. Arch Ophthalmol 96:2054–2057

    PubMed  CAS  Google Scholar 

  32. Klien BA, Krill AE (1967) Fundus flavimaculatus. Clinical, functional, and histopathologic observations. Am J Ophthalmol 64:3–23

    PubMed  CAS  Google Scholar 

  33. Leveille AS, Morse PH, Burch JV (1982) Fundus flavimaculatus and subretinal neovascularization. Ann Ophthalmol 14:331–334

    PubMed  CAS  Google Scholar 

  34. Lewis RA et al (1999) Genotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt’s disease. Am J Hum Genet 64:422–434

    Article  PubMed  CAS  Google Scholar 

  35. Lois N et al (1999) Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope. Br J Ophthalmol 83:276–279

    Article  PubMed  CAS  Google Scholar 

  36. Lois N et al (1999) Intrafamilial variation of phenotype in Stargardt macular dystrophy—fundus flavimaculatus. Invest Ophthalmol Vis Sci 40:2668–2675

    PubMed  CAS  Google Scholar 

  37. Lois N et al (2000) Quantitative evaluation of fundus autofluorescence “in vivo” in eyes with retinal disease. Br J Ophthalmol 84:741–745

    Article  PubMed  CAS  Google Scholar 

  38. Lois N et al (2001) Phenotypic subtypes of Stargardt macular dystrophy—fundus flavimaculatus. Arch Ophthalmol 119:359–369

    PubMed  CAS  Google Scholar 

  39. Lois N et al (2004) Fundus autofluorescence in Stargardt macular dystrophy—fundus flavimaculatus. Am J Ophthalmol 138:55–63

    Article  PubMed  Google Scholar 

  40. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97:7154–7159

    Article  PubMed  CAS  Google Scholar 

  41. McDonnell PJ et al (1986) Fundus flavimaculatus without maculopathy. A clinicopathologic study. Ophthalmology 93:116–119

    PubMed  CAS  Google Scholar 

  42. Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25:257–258

    Article  PubMed  CAS  Google Scholar 

  43. Parisi V et al (2002) Altered recovery of macular function after bleaching in Stargardt’s diseasefundus flavimaculatus: pattern VEP evidence. Invest Ophthalmol Vis Sci 43:2741–2748

    PubMed  Google Scholar 

  44. Parodi MB (1994) Progressive subretinal fibrosis in fundus flavimaculatus. Acta Ophthalmol 72:260–264

    CAS  Google Scholar 

  45. Querques G et al (2006) Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br J Ophthalmol 90:1157–1162

    Article  PubMed  CAS  Google Scholar 

  46. Radu RA et al (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci USA 100:4742–4747

    Article  PubMed  CAS  Google Scholar 

  47. Radu RA et al (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933

    Article  PubMed  CAS  Google Scholar 

  48. Rotenstreich Y, Fishman GA, Anderson RJ (2003) Visual acuity loss and clinical observations in a large series of patients with Stargardt’s disease. Ophthalmology 110:1151–1158

    Article  PubMed  Google Scholar 

  49. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue lightinduced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    PubMed  CAS  Google Scholar 

  50. Sparrow JR et al (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278:18207–18213

    Google Scholar 

  51. Stargardt K (1909) über familiäre progressive Degeneration in der Makulagegend des Auges. Graefes Arch Klin Ophthalmol 71:534–550

    Google Scholar 

  52. Stavrou P et al (1998) Electrophysiological findings in Stargardt’s—fundus flavimaculatus. Eye 12:953–958

    PubMed  Google Scholar 

  53. Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16

    Article  PubMed  Google Scholar 

  54. Sun H, Nathans J (2001) ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of alltrans-retinal-mediated photooxidative damage in vitro. Implications for retinal disease. J Biol Chem 276:11766–11774

    Article  PubMed  CAS  Google Scholar 

  55. Sun H, Molday RS, Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt’s disease. J Biol Chem 274:8269–8281

    Article  PubMed  CAS  Google Scholar 

  56. Suter M et al (2000) Age-related macular degeneration. The lipofuscin component N-retinyl-Nretinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–39630

    Article  PubMed  CAS  Google Scholar 

  57. Uliss AE, Moore AT, Bird AC (1987) The dark choroid in posterior retinal dystrophies. Ophthalmology 94:1423–1427

    PubMed  CAS  Google Scholar 

  58. Van Meel GJ, Van Norren D (1986) Foveal densitometry as a diagnostic technique in Stargardt’s disease. Am J Ophthalmol 102:353–362

    PubMed  Google Scholar 

  59. Von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412

    Article  Google Scholar 

  60. Von Rückmann A, Fitzke FW, Bird AC (1997) In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 115:609–615

    Google Scholar 

  61. Webster AR et al (2001) An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 42:1179–1189

    PubMed  CAS  Google Scholar 

  62. Weng J et al (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  PubMed  CAS  Google Scholar 

  63. Wroblewski JJ et al (1995) Indocyanine green angiography in Stargardt’s flavimaculatus. Am J Ophthalmol 120:208–218

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lois, N. (2007). New Perspectives in Stargardt’s Disease. In: Holz, F.G., Spaide, R.F. (eds) Medical Retina. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33672-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33672-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33671-6

  • Online ISBN: 978-3-540-33672-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics