Advertisement

Micromachining Technology

  • Paddy J. French
  • Pasqualina M. Sarro

Abstract

The term micromachining usually refers to the fabrication of micromechanical structures with the aid of etching techniques to remove part of the substrate or a thin film. Silicon has excellent mechanical properties,[1] making it an ideal material for machining. An early silicon (pressure) sensor was made by Honeywell in 1962 using isotropic etching.[2] In 1966, Honeywell developed a technique to fabricate thin membranes using mechanical milling. Crystal-orientation-dependent etchants led to more precise definition of structures and increased interest.[3] Anisotropic etching was introduced in 1976. An early silicon pressure sensor, based on anisotropic etching, was made by Greenwood in 1984.[4] Surface micromachining also dates back to the 1960s. Early examples included metal mechanical layers.[5] Basically, surface micromachining involves the formation of mechanical structures from thin films on the surface of the wafer. The 1980s saw the growth of silicon-based surface micromachining using a polysilicon mechanical layer.[6,7] In recent years, a number of new technologies have been developed using both silicon and alternative materials. These include the epi-processes where the epilayer is used as a mechanical layer and a number of deep plasma etching processes. This chapter concentrates on silicon-based micromachining processes.

Keywords

Porous Silicon Etch Rate CMOS Process Sacrificial Layer Black Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.E. Petersen, “Silicon as a mechanical material,” Proc. IEEE, 70:420–457 (1982)CrossRefGoogle Scholar
  2. 2.
    O.N. Tufte and G.D. Long, “Silicon diffused element piezoresistive diaphragm,” J. Appl. Phys., 33:3322 (1962)CrossRefGoogle Scholar
  3. 3.
    K.E. Bean, “Anisotropic etching of silicon,” IEEE Trans Electron Devices, ED-25: 1185–1193 (1978)CrossRefGoogle Scholar
  4. 4.
    J.C. Greenwood, “Etched silicon vibrating sensor,” J. Phys. E. Sei. Instrum., 17: 650–652 (1984)CrossRefGoogle Scholar
  5. 5.
    H.C. Nathanson and R.A. Wickstrom, “A resonant-gate silicon surface transistor with high-Q band pass properties,” Appl. Phys. Lett., 7:84 (1965)CrossRefGoogle Scholar
  6. 6.
    R.T. Howe and R.S. Muller, “Polycrystalline and amorphous silicon micromechanical beams: annealing and mechanical properties,” Sens. Actuators, 4: 447–454 (1983)CrossRefGoogle Scholar
  7. 7.
    L-S. Fan, Y-C. Tai, and R.S. Muller, “Pin joints, gears, springs, cranks and other novel micromechanical structures,” Proc. Transducers 1987, Tokyo, (1987), pp. 849–852Google Scholar
  8. 8.
    M. Elwenspoek and H. Jansen, Silicon Micromachining, Cambridge University Press (1998)Google Scholar
  9. 9.
    H. Seidel, H. Csepregi, A. Heuberger, and H. Baumgartner, “Anisotropic etching of crystalline silicon in alkaline solutions I & II,” J. Electrochem. Soc., 137:3612–3632 (1990)CrossRefGoogle Scholar
  10. 10.
    D. Zielke and J. Frühauf, “Determination of rates for orientation-dependent etching,” Sens. Actuators, A48:151–156 (1995)CrossRefGoogle Scholar
  11. 11.
    K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Irie, and M. Yamamoto, “Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration,” Sens. Actuators, A64: 87–93 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators, A80:179–188 (2000)CrossRefGoogle Scholar
  13. 13.
    G.T. Kovacs et al., “Bulk micromachining of silicon,” Proc. IEEE, 86(8):1536–1551 (1998)CrossRefMathSciNetGoogle Scholar
  14. 14.
    T.A. Kwa, P.J. French, R.F. Wolffenbuttel, P.M. Sarro, L. Hellemans, and J. Snauwaert, “Anisotropically etched silicon mirrors for optical sensor applications,” J. Electrochem. Soc., 142:1226–1233 (1995)CrossRefGoogle Scholar
  15. 15.
    R.M. Finne and D.L. Klein, “A water-amine-complexing agent system for etching silicon,” J. Electrochem. Soc., 114: 965–970 (1967)CrossRefGoogle Scholar
  16. 16.
    A. Reisman, M. Berkenblit, S.A. Chan, F.B. Kaufman, and D.C. Green, J. Electrochem. Soc., 126:1406–1410 (1979)CrossRefGoogle Scholar
  17. 17.
    O. Tabata, “pH-controlled TMAH etchants for silicon micromachining,” Sens. Actuators, A53: 335–339 (1996)CrossRefGoogle Scholar
  18. 18.
    A. Merlos, M. Acero, M.H. Baor, J. Bauselles, and J. Esteve, “TMAH/IPA anisotropic etching characteristics,” Sens. Actuators, A37–38:737–743 (1993)CrossRefGoogle Scholar
  19. 19.
    P.M. Sarro, S. Brida, C.M.A. Ashruf, W.v.d. Vlist, and H.v. Zeijl, “Anisotropic etching of silicon in saturated TMAHW solutions for IC-compatible micromachining,” Sens. Mater., 10:201–212 (1998)Google Scholar
  20. 20.
    H. Baltes, “CMOS as sensor technology,” Sens. Actuators, 37–38:51–56 (1993)CrossRefGoogle Scholar
  21. 21.
    M.J. Dececlerq, L. Gerzberg, and J.D. Meindl, “Optimization of the hydrazine-water solution for anisotropic etching of silicon in integrated circuit technology,” J. Electrochem. Soc., 122(4):201–212 (1975)Google Scholar
  22. 22.
    M. Mehregany and S.D. Senturia, “Anisotropic etching of silicon in hydrazine,” Sens. Actuators, 13:375–390 (1988)CrossRefGoogle Scholar
  23. 23.
    M.A. Gajda, J.E.A. Shaw, A. Putnis, and H. Ahmed, “Anisotropic etching of silicon in hydrazine,” Sens. Actuators, A40: 227–236 (1994)CrossRefGoogle Scholar
  24. 24.
    U. Schnakenberg et al, “NH4OH based etchants for silicon micromachining,” Sens. Actuators, A21–23:1031–1035 (1990)CrossRefGoogle Scholar
  25. 25.
    L.D. Clark, Jr., J.L. Lund, and D.J. Edell, “Cesium hydroxide (CsOH): a useful etchant for micromachining silicon,” Tech. Digest IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, June 6–9, 1988, pp. 5–8Google Scholar
  26. 26.
    E.D. Palik et al, “Study of the etch-stop mechanism in silicon,” J. Electrochem. Soc., 137:2051–2059 (1982)CrossRefGoogle Scholar
  27. 27.
    Y. Gianchandani and K. Najafi, “A bulk dissolved wafer process for microelectromechanical systems,” IEDM Tech. Digest (1991), pp. 757–760Google Scholar
  28. 28.
    A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Morante, M.C. Acero, J. Esteve, and J. Montserrat, “Etch-stop behaviour of buried layers formed by substoichiometric nitrogen ion implantation into silicon,” J. Electrochem. Soc., 143:1026–1033 (1996)CrossRefGoogle Scholar
  29. 29.
    H.A. Waggener, “Electrochemically controlled thinning of silicon,” Bell Syst. Tech. J., 49:473–475 (1970)Google Scholar
  30. 30.
    B. Kloek, S.D. Collins, N.F.de Rooij, and R.L. Smith, “Study of electrochemical etch-stop for high precision thickness control of silicon membranes,” IEEE Electron Dev., 36:663–669 (1989)CrossRefGoogle Scholar
  31. 31.
    P.M. Sarro and A.W.van Herwaarden, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications,” J. Electrochem. Soc., 133:1724–1729 (1986)CrossRefGoogle Scholar
  32. 32.
    A.W. van Herwaarden, D.C. van Duyn, B.W. van Oudheusden, and P.M. Sarro, “Integrated thermal sensors,” Sens. Actuators, A21–23:621–630 (1989)CrossRefGoogle Scholar
  33. 34.
    E. Peeters, D. Lapadatu, R. Puers, and W. Sansen, “PHET, An electrodeless photovoltaic electrochemical etch-stop technique,” J. Microelectromech. Syst., 3:113–123 (1994)CrossRefGoogle Scholar
  34. 35.
    D. Lapadatu, M. de Cooman, and R. Puers, “A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique,” Sens. Actuators, A53:261–266 (1996)CrossRefGoogle Scholar
  35. 36.
    P.J. French, M. Nagao, and M. Esashi, “Electrochemical etch-stop in TMAH without externally applied bias,” Sens. Actuators, A56:279–280 (1996)CrossRefGoogle Scholar
  36. 37.
    C.M.A. Ashruf, P.J. French, P.M.M.C. Bressers, P.M. Sarro, and J.J. Kelly, “A new contactless electrochemical etch-stop based on gold/silicon/TMAH galvanic cell,” Sens. Actuators, A66:284–291 (1998)CrossRefGoogle Scholar
  37. 38.
    C.M.A. Ashruf, Galvanic Etching of Silicon for Fabrication of Micromechanical Structures, Delft University Press (2000), ISBN 90-407-2001-0Google Scholar
  38. 39.
    M.M. Abu-Zeid, “Corner undercutting in anisotropically etched isolation contours,” J. Electrochem. Soc., 131:2138–2142 (1984)CrossRefGoogle Scholar
  39. 40.
    X. Wu and W. Ko, “Compensating corner undercutting in anisotropic etching of (100) silicon,” Sens. Actuators, A18:207–215 (1989)CrossRefGoogle Scholar
  40. 41.
    R. van Kampen and R.F. Wolffenbuttel, “Effects of <100>-oriented corner compensation structures on membrane quality and convex corner integrity in (100)-silicon using aqueous KOH,” J. Micromech. Microeng., 5:91–94 (1995)CrossRefGoogle Scholar
  41. 42.
    H.L. Offereins, H. Sandmaier, K. Marusczyk, K. Kuhl, and A. Plettner, “Compensating corner undercutting of (100) silicon in KOH,” Sens. Mater., 3:127–144 (1992)Google Scholar
  42. 43.
    G.M. O’Hallaran, Capacity Humidity Sensor Based on Porous Silicon, Delft University Press (2000), ISBN 90-407-1919-5Google Scholar
  43. 44.
    G.M. O’Hallaran, M. Kuhl, P.J. Trimp, and P.J. French, “The effect of additives on the adsorption properties of porous silicon,” Sens. Actuators, A61:415–420 (1997)CrossRefGoogle Scholar
  44. 45.
    P.T.J. Gennissen and P.J. French, “Sacrificial oxide etching compatible with aluminium metallization,” Proc. Transducers 97, Chicago, USA, June 1997, pp. 225–228Google Scholar
  45. 46.
    M. Kuhl, G.M. O’Halloran, RT.J. Gennissen, and P.J. French, “Formation of porous silicon using an ammonium fluoride based electrolyte for application as a sacrificial layer,” J. Micromech. Microeng., 8:317–322 (1998)CrossRefGoogle Scholar
  46. 47.
    H. Robbins and B. Schwartz, “Chemical etching of silicon,” J. Electrochem. Soc., 123:1903–1909 (1976)CrossRefGoogle Scholar
  47. 48.
    S.D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc., 144:2242–2262 (1997)CrossRefGoogle Scholar
  48. 49.
    N. Schweisinger and A. Albrecht, “Wet chemical isotropic etching procedure of silicon — a possibility for the production of deep structured microcomponents,” Proc. SPIE Micromachining and Microfabrication Process Technology III, 3233:72–81 (1997)Google Scholar
  49. 50.
    K.R. Williams and R.S. Muller, “Etch rates for micromachining processes,” J. Microelectromech. Syst., 5:256–269 (1996)CrossRefGoogle Scholar
  50. 51.
    K.C. Lee, “The fabrication of thin, freestanding, single-crystal, semiconductor membranes,” Electrochem. Soc., 137:2556–2574 (1990)CrossRefGoogle Scholar
  51. 52.
    T. Bischoff, G. Muller, W. Weiser, and F. Koch, “Front side micromachining using porous-silicon sacrificial-layer technology,” Sens. Actuators, A60:228–234 (1997)CrossRefGoogle Scholar
  52. 53.
    C. Ducso et al., “Porous silicon bulk micromachining for thermally isolated membrane formation,” Sens. Actuators, A60:235–239 (1997)CrossRefGoogle Scholar
  53. 54.
    C.J.M. Eijkel, J. Branebjerg, M. Elwenspoek, and F.C.M. van de Pol, “A new technology for micromachining of silicon: dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures,” IEEE Electron. Dev. Lett., 11:588–589 (1990)CrossRefGoogle Scholar
  54. 55.
    M.J.J. Theunissen, “Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid,” J Electrochem. Soc., 119:351–360(1972)CrossRefGoogle Scholar
  55. 56.
    M. Esashi, H. Komatsu, T. Matsuo, M. Takahashi, T. Takishima, K. Imbayashi, and H. Ozawa, “Fabrication of catheter-tip and sidewall miniature pressure sensor,” IEEE Trans. Electron. Dev., 29:57–63 (1982)CrossRefGoogle Scholar
  56. 57.
    G. Kaltsas and A.G. Nassiopoulou, “Front side bulk micromachining using porous-silicon technology,” Sens. Actuators, A65:175–179 (1998)CrossRefGoogle Scholar
  57. 58.
    W. Lang, P. Steiner, and H. Sandmaier, “Porous silicon: a novel material for microsystems,” Sens. Actuators, A51:31–36 (1995)CrossRefGoogle Scholar
  58. 59.
    P.T.J. Gennissen and P.J. French, “Development of silicon accelerometers using epi micromachining,” Proc. SPIE Micromachined Devices and Components, Santa Clara, CA, USA, Sept. 1999, 3876:84–92Google Scholar
  59. 60.
    T.E. Bell and K.D. Wise, “A dissolved wafer process using porous silicon sacrificial layer and a lightly-doped bulk silicon etch-stop,” Proc. IEEE MEMS, Heidelberg, Germany, Jan. 1997, pp. 251–256Google Scholar
  60. 61.
    T. Yoshida, T. Kudo, and K. lkeda, “Photo-induced preferential anodization for micromachining,” Sensors Mater., 4/5:229–238 (1993)Google Scholar
  61. 62.
    C.M.A. Ashruf, P.J. French, P.M.M.C. Bressers, and J.J. Kelly, “Galvanic porous silicon formation without external contact,” Sens. Actuators, A74:118–122 (1999)CrossRefGoogle Scholar
  62. 63.
    H. Ohji, P.J. Trimp, and P.J. French, “Fabrication of free standing structures using a single step electrochemical etching in hydrofluoric acid,” Sens. Actuators, A73:95–100 (1999)CrossRefGoogle Scholar
  63. 64.
    H. Ohji, P.J. French, and K. Tsutsumi, “Fabrication of mechanical structures in p-type silicon using electrochemical etching,” Sens. Actuators, A82(1–3):254–258 (2000)CrossRefGoogle Scholar
  64. 65.
    H. Ohji, P.J. French, S. Izuo, and K. Tsutsumi, “Initial pits for electrochemical etching in hydrofluoric acid,” Sens. Actuators, A85(1–3):390–394 (2000)CrossRefGoogle Scholar
  65. 66.
    V. Lehmann, “Porous silicon-a new material for MEMS,” Proc. IEEE MEMS Workshop 1996, San Diego, USA (1996), pp. 1–6Google Scholar
  66. 67.
    H. Ohji and P.J. French, “Single step electrochemical etching in ammonium fluoride,” Sens. Actuators, A74:109–112 (1999)CrossRefGoogle Scholar
  67. 68.
    J.W. Bartha, J. Greschner, M. Puech, and P. Maquin, “Low temperature etching of Si in high-density plasma using SF6/02,” Microelectron. Eng., 27:453–156 (1995)CrossRefGoogle Scholar
  68. 72.
    F. Laemer, A. Schilp, K. Funk, and M. Offenberg, “Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications,” Proc. IEEE MEMS 1999 Conf., Orlando, FL, USA (1999)Google Scholar
  69. 73.
    G. Craciun, M.A. Blauw, E. van der Drift, and P.J. French, “Aspect ratio and crystallographic orientation dependence in deep dry silicon etching at cryogenic temperatures,” Tech. Digest Transducers 2001, Munich, Germany, June 2001Google Scholar
  70. 75.
    E. Klaassen et al, “Silicon fusion bonding and deep reactive ion etching; a new technology for microstructures,” Proc. Transducers 1995, Stockholm, Sweden, June 1995, pp. 556–559Google Scholar
  71. 76.
    T.M. Bloomstein and D.J. Ehrlich, “Laser deposition and etching of threedimensional microstructures,” Proc. Transducers 1991, San Francisco, USA, June 1991, pp.507–511Google Scholar
  72. 77.
    M. Mullenbom, H. Dirac, J.W. Petersen, and S. Bouwstra, “Fast 3D laser micromachining of silicon for micromechanical and microfluidic applications,” Proc. Transducers 1995, Stockholm, Sweden, June 1995, pp. 166–169Google Scholar
  73. 78.
    Resonetics, Nashua, NH, USA, http://www.resonetics.com Google Scholar
  74. 79.
    S. Reyntjes and R. Puers, “Focused ion beam applications in microsystem technology,” Micro-Mechanics Europe (MME) Workshop, Uppsala, Sweden, October 1–3, 2000, pp. 87–96Google Scholar
  75. 80.
    R.J. Young, “Micro-machining using a focused ion beam,” Vacuum 44:353–356 (1993)CrossRefGoogle Scholar
  76. 81.
    G.J. Althas et al., “Focused ion beam system for automated MEMS prototyping and processing,” Proc. SPIE Micromachining and Microfabrication Process Technology III, 3223:198–207 (1997)Google Scholar
  77. 82.
    J.H. Daniel and D.F. Moore, “A microaccelerometer structure fabricated in silicon-on insulator using a focused ion beam process,” Sens. Actuators, A73:201–209 (1999)CrossRefGoogle Scholar
  78. 83.
    E. Belloy, S. Thurre, E. Walckiers, A. Sayah, and M.A.M. Gijs, “The introduction of powder blasting for sensor and microsystem applications,” Sens. Actuators, A84:330–337 (2000)CrossRefGoogle Scholar
  79. 84.
    P.J. Slikkerveer, P.C. Bouten, and F.C.M. de Haas, “High quality mechanical etching of brittle materials by powder blasting,” Proc. XIII Eurosensors Conf., The Hague, The Netherlands, Sept. 12–15, 1999, pp.655–662; ISBN 90-76699-02-XGoogle Scholar
  80. 85.
    H. Wensink, J.W. Berenschot, H.V. Jansen, and M.C. Elwenspoek, “High resolution powder blast micromachining,” Proc. IEEE MEMS 2000 Conf., Miyazaki, Japan (2000), pp. 169–11AGoogle Scholar
  81. 86.
    H.C. Nathanson, W.E. Newell, R.A. Wickstrom, and J.R. Davis, Jr., “The resonant gate transistor,” IEEE Trans. Electron. Dev., 14:117–133 (1967)CrossRefGoogle Scholar
  82. 87.
    R.N. Thomas, J. Guldberg, H.C. Nathanson, and PR. Malmberg, “The mirror matrix tube: a novel light valve for projection displays,” IEEE Electron. Dev., ED-22:765 (1975)CrossRefGoogle Scholar
  83. 88.
    K.J. Gabriel, W.S.N. Trimmer, and M. Mehregany, “Micro gears and turbines etched from silicon,” Proc. Transducers 87, Tokyo, 1987, pp. 853–856Google Scholar
  84. 89.
    Y.X. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “Fabrication of a single crystalline capacitive lateral accelerometer using micromachining based on single step plasma etching,” Proc. MEMS 95, Amsterdam, Jan–Feb 1995, pp. 398–403Google Scholar
  85. 90.
    K.A. Shaw and N.C. MacDonald, “Integrating SCREAM micromachined devices with integrated circuits,” Proc. IEEE MEMS, San Diego, USA, 11–15 February 1996, pp. 44–48Google Scholar
  86. 91.
    K.A. Shaw, Z.L. Zhang, and N.C. MacDonald, “SCREAM I: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sens. Actuators, A40:63–70 (1994)CrossRefGoogle Scholar
  87. 92.
    M. de Boer, H. Jansen, and M. Elwenspoek, “Black silicon V: a study of the fabricating of moveable structures for micro electromechanical systems,” Proc. Transducers 95, Stockholm, Sweden (1995), pp. 565–568Google Scholar
  88. 93.
    M. Bartek, P.T.J. Gennissen, P.M. Sarro, P.J. French, and R.F. Wolffenbuttel, “An integrated silicon colour sensor using selective epitaxial growth,” Sens. Actuators, A41–42:123–128 (1994)CrossRefGoogle Scholar
  89. 94.
    A.E. Kabir, G.W. Neudeck, and J.A. Hancock, “Merged epitaxial lateral overgrowth (MELO) of silicon and its applications in fabricating single crystal silicon surface micromachining structures,” Proc. Techcon 93, Atlanta, GA, USA (1993)Google Scholar
  90. 95.
    P.T.J. Gennissen, Micromachining Techniques Using Layers Grown in an Epitaxial Reactor, Delft University Press (1999), ISBN 90-407-1843-1Google Scholar
  91. 96.
    T.E. Bell, P.T.J. Gennissen, D. de Munter, and M. Kuhl, “Porous silicon as a sacrificial material”, J. Micromech. Microeng., 6:361–369 (1996)CrossRefGoogle Scholar
  92. 97.
    P.T.J. Gennissen, P.J. French, D.P.A. De Munter, T.E. Bell, H. Kaneko, and P.M. Sarro, “Porous silicon micromachining techniques for acceleration fabrication,” Proc. ESSDERC 95, Den Haag, The Netherlands, Sept. 1995, pp. 593–596Google Scholar
  93. 98.
    B. Diem, P. Rey, S. Renard, S. Viollet Bosson, H. Bono, F. Michel, M.T. Delaye, and G. Delapierre, “SOI’ sIMOX’ from bulk to surface micromachining, a new age for silicon sensors and actuators,” Sens. Actuators, A46–47:8–26 (1995)CrossRefGoogle Scholar
  94. 99.
    T. Lisec, M. Kreutzer, and B. Wagner, “A surface micromachined piezoresistive pressure sensor with high sensitivity,” Proc. ESSDERC 95, Den Haag, The Netherlands, Sept. 1995, pp. 339–342Google Scholar
  95. 100.
    P.T.J. Gennissen, P.J. French, M. Bartek, P.M. Sarro, A. van der Bogaard, and C. Visser, “Bipolar compatible epitaxial polysilicon for surface micromachined smart sensors,” Proc. SPIE Micromachining and Microfabrication Process Technology II, Austin, Texas, USA, 14–15 Oct. 1996, pp. 135–142Google Scholar
  96. 101.
    P.T.J. Gennissen, M. Bartek, P.J. French, and P. M. Sarro, “Bipolar compatible epitaxial poly for smart sensor-stress minimization and applications,” Sens. Actuators, A62:636–645 (1997)CrossRefGoogle Scholar
  97. 102.
    G.T. Mulhern, D.S. Soane, and R.T Howe, “Supercritical carbon dioxide drying of microstructures,” Proc. Transducers 1993, Yokohama, Japan, pp. 296–299Google Scholar
  98. 103.
    R. Legtenberg and H.A.C. Tilmans, “Electrostatically driven vacuumencapsulation polysilicon resonators: Part 1. Design and fabrication,” Sens. Actuators, A45:57–66 (1994)CrossRefGoogle Scholar
  99. 104.
    P.J. French and R.F. Wolffenbuttel, “Reflow of BPSG for sensor applications,” J. Micromech. Microeng., 3:1–3 (1993)CrossRefGoogle Scholar
  100. 105.
    A.C. Adams, “Plasma planarisation,” Solid State Technol., 24(1): 178–181 (1981)Google Scholar
  101. 106.
    Y.X. Li, P.J. French, and R.F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst., 4:132–138 (1995)CrossRefGoogle Scholar
  102. 107.
    B. Roberts, “Chemical mechanical planarisation,” Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop 1992, Cambridge, MA, USA, 30 Sept.–l Oct. 1992, pp. 206–210Google Scholar
  103. 108.
    J.J. Sniegowski, “Chemical mechanical polishing: enhancing the manufacturability of MEMS,” Proc. SPIE Micromachining and Microfabrication Process Technology II, Austin, Texas, USA, 14–15 Oct. 1996, pp. 104–115Google Scholar
  104. 109.
    K.M. Mahmoud and R.F. Wolffenbuttel, “Compatibility between bipolar read-out electronics and microstructures in silicon,” Sens. Actuators, A31:188–199 (1992)CrossRefGoogle Scholar
  105. 110.
    J.H. Smith, S. Montague, J.J. Sniegowski, J.R. Murray, R.P. Manginell, and P.J. McWhorter, “Characterisation of the embedded micromachined device approach to the monolithic integration of MEMS with CMOS,” Proc. SPIE Micromachining and Microfabrication Process Technology II, Austin, Texas, USA, 14–15 Oct. 1996, 2879:306–314Google Scholar
  106. 111.
    Y.B. Gianchandani, M. Shinn, and K. Najafi, “Impact of long high temperature anneals on residual stress in polysilicon,” Proc. Transducers 97, Chicago, USA, June 1997, pp. 623–624Google Scholar
  107. 112.
    B.P van Drieënhuizen, J.FL. Goosen, P.J. French, Y.X. Li, D. Poenar, and R.F. Wolffenbuttel, “Surface micromachined module compatible with BiFET electronic processing,” Proc. Eurosensors 94, Toulouse, France, Sept. 1994, p. 108Google Scholar
  108. 113.
    M. Fischer, M. Nägele, D. Eichner, C. Schöllhorn, and R. Strobel, “Integration of surface micromachined polysilicon mirrors and a standard CMOS process,” Sens. Actuators, A52:140–144 (1996)CrossRefGoogle Scholar
  109. 114.
    C. Hierold, A. Hilderbrandt, U. Näher, T. Scheiter, B. Mensching, M. Steger, and R. Tielert, “A pure CMOS surface micromachined integrated accelerometer,” Proc. MEMS 96, San Diego, USA, Feb. 1996, pp. 174–179Google Scholar
  110. 115.
    G.K. Fedder, S. Santhanan, M.L. Read, S.C. Eagle, D.F. Guillou, M.S.-C. Lu, and L.R. Carley, “Laminated high-aspect ratio microstructures in a conventional CMOS process,” Proc. MEMS 96, San Diego, USA, Feb. 1996, pp. 13–18Google Scholar
  111. 116.
    D. Westberg, O. Paul, G.I. Andersson, and H. Baltes, “Surface micromachining by sacrificial aluminium etching,” J. Micromech. Microeng., 6:376–384 (1996)CrossRefGoogle Scholar
  112. 117.
    O. Paul, D. Westberg, M. Hornung, V. Ziebart, and H. Baltes, “Sacrificial aluminum etching for CMOS microstructures”, Proc. MEMS 97, Nagoya, Japan, Jan. 1997, pp. …Google Scholar
  113. 118.
    H. Xie and G.K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” Proc. IEEE MEMS 2000, Miyazaki, Japan, 23–27 January 2000, pp. 496–501Google Scholar
  114. 119.
    J.M. Bustillo, G.K. Fedder, C.T.-C. Nguyen, and R.T. Howe, “Process technology for the modular integration of CMOS and polysilicon microstructures,” Microsyst. Technol., 1:30–41 (1994)CrossRefGoogle Scholar

Copyright information

© William Andrew, Inc. 2006

Authors and Affiliations

  • Paddy J. French
    • 1
  • Pasqualina M. Sarro
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations