Lois de valeurs extrêmes

Part of the Mathématiques & applications book series (MATHAPPLIC, volume 57)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    J. Beirlant, Y. Goegebeur, J. Teugels et J. Segers. Statistics of extremes. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester, 2004.Google Scholar
  2. 2.
    N. Bingham, C. Goldie et J. Teugels. Regular variation. Cambridge University Press, Cambridge, 1987.MATHGoogle Scholar
  3. 3.
    S. Coles. An introduction to statistical modeling of extreme values. Springer Series in Statistics. Springer-Verlag London Ltd., London, 2001.Google Scholar
  4. 4.
    L. de Haan. Fighting the arch-enemy with mathematics. Stat. Neerl., 44(No.2): 45-68, 1990.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A.L.M. Dekkers et L. de Haan. On the estimation of the extreme-value index and large quantile estimation. Ann. Statist., 17(4): 1795-1832, 1989.CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Embrechts, C. Klueppelberg et T. Mikosch. Modelling extremal events for insurance and finance, volume 33 d’Applications of Mathematics. Springer, Berlin, 1997.Google Scholar
  7. 7.
    M. Falk, J. Hüsler et R.-D. Reiss. Laws of small numbers : extremes and rare events, volume 23 de DMV Seminar. Birkhäuser Verlag, Basel, 1994.Google Scholar
  8. 8.
    M.E.J. Newman. Power laws, Pareto distributions and Zipf ’s law. Contempo-rary Physics, 46: 323-351, 2005.CrossRefGoogle Scholar
  9. 9.
    S. Resnick. Extreme values, regular variation, and point processes. Applied Pro-bability. Springer-Verlag, New York, 1987.MATHGoogle Scholar

Copyright information

© Springer 2006

Personalised recommendations