Skip to main content

Illustrating the classification of real cubic surfaces

  • Conference paper

Part of the Mathematics and Visualization book series (MATHVISUAL)

Keywords

  • Singular Point
  • Jacobian Ideal
  • Tangent Cone
  • Algebraic Surface
  • Topological Type

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-33275-6_8
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-33275-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. Singularities of Differentiable Maps. Birkhäuser, 1985.

    Google Scholar 

  2. J.W. Bruce and C.T.C. Wall. On the Classification of Cubic Surfaces. J. Lond. Math. Soc., II. ser., (19):245-259, 1979.

    CrossRef  MathSciNet  Google Scholar 

  3. A. Cayley. A Memoir on Cubic Surfaces. Philos. Trans. Royal Soc., CLIX:231- 326,1869.

    Google Scholar 

  4. M. Demazure. Surfaces de Del Pezzo, I, II, III, IV et V. In M. Demazure, H. Pinkham, and B. Teissier, editors, Séminaire sur les singularités des surfaces, Lecture Notes in Math. 777, pages 21-69. Springer-Verlag, 1980.

    Google Scholar 

  5. A. Dimca. Topics on Real and Complex Singularities. Vieweg, 1987.

    Google Scholar 

  6. S. Endraß. Symmetrische Flächen mit vielen gewöhnlichen Doppelpunkten. PhD thesis, Fr.-A.-Universität Erlangen-Nürnberg, 1996.

    MATH  Google Scholar 

  7. S. Endraß. Surf 1.0.3. http://surf.sourceforge.net, 2001. A Computer Software for Visualising Real Algebraic Geometry.

  8. G. Fischer. Mathematische Modelle/Mathematical Models. Vieweg, 1986. Bildband, Kommentarband.

    Google Scholar 

  9. G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System for Polynomial Computations, Univ. Kaiserslautern, 2001. http://www.singular.uni-kl.de.

  10. S. Holzer, O. Labs, and R. Morris. surfex - Visualization of Real Algebraic Surfaces. www.surfex.AlgebraicSurface.net, 2005.

  11. F. Klein.Über Flächen dritter Ordnung. Math. Annalen, VI:551-581, Tafeln I-VI, 1873. also in: [12], p. 11-62.

    Google Scholar 

  12. F. Klein. Gesammelte Mathematische Abhandlungen, volume II. Verlag von Julius Springer, Berlin, 1922.

    Google Scholar 

  13. H. Knörrer and T. Miller. Topologische Typen reeller kubischer Flächen. Mathematische Zeitschrift, 195, 1987.

    Google Scholar 

  14. O. Labs. Algebraic Surface Homepage. Information, Images and Tools on Algebraic Surfaces. www.AlgebraicSurface.net, 2003.

  15. O. Labs and D. van Straten. The Cubic Surface Homepage. www.CubicSurface.net, 2000.

  16. O. Labs and D. van Straten. A Visual Introduction to Cubic Surfaces Using the Computer Software Spicy. In M. Joswig and N. Takayama, editors, Algebra, Geometry, and Software Systems, pages 225-238. Springer, 2003.

    Google Scholar 

  17. R. Morris. LSMP: Liverpool surface modeling package. http://www singsurf.org, 2003.

  18. K. Polthier. JavaView. www.JavaView.de, 2001.

  19. L. Schläfli. On the Distribution of Surfaces of the Third Order into Species, in Reference to the Presence or Absence of Singular Points and the Reality of their Lines. Philos. Trans. Royal Soc., CLIII:193-241, 1863.

    CrossRef  Google Scholar 

  20. B. Segre. The non-singular Cubic Surfaces. Clarendon, Oxford, 1942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, S., Labs, O. (2006). Illustrating the classification of real cubic surfaces. In: Elkadi, M., Mourrain, B., Piene, R. (eds) Algebraic Geometry and Geometric Modeling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33275-6_8

Download citation