Elimination in generically rigid 3D geometric constraint systems

  • Jörg Peters
  • Meera Sitharam
  • Yong Zhou
  • JianHua Fan
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Mourrain et al. Synaps Library, web interface http://www-sop.inria.fr/ galaad/logiciels/synaps/html/index.html
  2. 2.
    R. Latham and A. Middleditch. Connectivity analysis: a tool for processing geometric constraints. Computer Aided Design, 28:917-928, 1996.CrossRefGoogle Scholar
  3. 3.
    C. M. Hoffmann, A. Lomonosov and M. Sitharam. Geometric constraint decom-position. In Bruderlin and Roller Ed.s, editor, Geometric Constraint Solving. Springer-Verlag, 1998.Google Scholar
  4. 4.
    C. M. Hoffmann, A. Lomonosov and M. Sitharam. Decomposition of geometric constraints systems, part i: performance measures. Journal of Symbolic Computation, 31(4), 2001.Google Scholar
  5. 5.
    C. M. Hoffmann, A. Lomonosov and M. Sitharam. Decomposition of geometric constraints systems, part ii: new algorithms. Journal of Symbolic Computation, 31 (4),2001.Google Scholar
  6. 6.
    J. E. Graver, B. Servatius and H. Servatius. Combinatorial Rigidity. Graduate Studies in Math., AMS, 1993.MATHGoogle Scholar
  7. 7.
    I. Fudos and C. M. Hoffmann. A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics, 16:179-216, 1997.CrossRefGoogle Scholar
  8. 8.
    A. Middleditch and C. Reade. A kernel for geometric features. In ACM/SIGGRAPH Symposium on Solid Modeling Foundations and CAD/CAM Applications. ACM press, 1997.Google Scholar
  9. 9.
    D. Cox, J. Little and D. O’Shea. Using algebraic geometry. Springer, 1998.Google Scholar
  10. 10.
    I. Emiris and J. Canny. A practical method for the sparse resultant. In In-ternational Conference on Symbolic and Algebraic Computation, Proceedings of the 1993 international symposium on Symbolic and algebraic computation, pages 183-192, 1993.Google Scholar
  11. 11.
    C Hoffman, M Sitharam and B Yuan. Making constraint solvers more useable: the overconstraint problem. CAD, 36(4), 377-399, 2004. 216Jörg Peters, Meera Sitharam, Yong Zhou, and JianHua FanGoogle Scholar
  12. 12.
    A. Lomonosov and M. Sitharam. Graph algorithms for geometric constraint solving. In submitted, 2004.Google Scholar
  13. 13.
    S. Ait-Aoudia, R. Jegou and D. Michelucci. Reduction of constraint systems. In Compugraphics, pages 83-92, 1993.Google Scholar
  14. 14.
    J Gaukel. Effiziente Lösung polynomialer und nichtpolynomialer Gleichungssys-teme mit Hilfe von Subdivisionsalgorithmen, PhD thesis, Mathematics, TU Darmstadt, Germany, 2003.Google Scholar
  15. 15.
    M Sitharam and Y Zhou. A tractable, approximate, combinatorial 3d rigidity characterization. proceedings of ADG 2004, 2004.Google Scholar
  16. 16.
    H. Crapo. Structural rigidity. Structural Topology, 1:26-45, 1979.MATHMathSciNetGoogle Scholar
  17. 17.
    H. Crapo. The tetrahedral-octahedral truss. Structural Topology, 7:52-61, 1982.Google Scholar
  18. 18.
    M Sitharam, J. Peters and Y Zhou. Solving minimal, wellconstrained, 3D geo-metric constraint systems: combinatorial optimization of algebraic complexity submitted, http://www.cise.ufl.edu/∼sitharam, 2004.
  19. 19.
    M Sitharam, A. Arbree, Y Zhou and N Kohareswaran. Solution management and navigation for 3d geometric constraint systems. to appear, ACM TOG, 2005.Google Scholar
  20. 20.
    D. Eppstein. Representing all minimum spanning trees with applications to counting and generation. Technical Report 95-50, Univ. of California, Irvine, Dept. of Information & Computer Science, Irvine, CA, 92697-3425, USA, 1995.Google Scholar
  21. 21.
    I. Fudos. Geometric Constraint Solving. PhD thesis, Purdue University, Dept of Computer Science, 1995.Google Scholar
  22. 22.
    G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.Google Scholar
  23. 23.
    G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331-340, 1970.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    J. Owen. www.d-cubed.co.uk/. In D-cubed commercial geometric constraint solving software.
  25. 25.
    J. Owen. Algebraic solution for geometry from dimensional constraints. In ACM Symp. Found. of Solid Modeling, pages 397-407, Austin, Tex, 1991.Google Scholar
  26. 26.
    J. Owen. Constraints on simple geometry in two and three dimensions. In Third SIAM Conference on Geometric Design. SIAM, November 1993. To appear in Int J of Computational Geometry and Applications.Google Scholar
  27. 27.
    J.A. Pabon. Modeling method for sorting dependencies among geometric enti-ties. In US States Patent 5,251,290, Oct 1993.Google Scholar
  28. 28.
    M. Sitharam. Frontier, an opensource 3d geometric constraint solver: algorithms and architecture. monograph, in preparation, 2004.Google Scholar
  29. 29.
    M. Sitharam. Graph based geometric constraint solving: problems, progress and directions. In Dutta and Janardhan and Smid, editor, AMS-DIMACS volume on Computer Aided Design, 2004.Google Scholar
  30. 30.
    M. Sitharam. Frontier, opensource gnu geometric constraint solver: Version 1 (2001) for general 2d systems; version 2 (2002) for 2d and some 3d systems; version 3 (2003) for general 2d and 3d systems. In http://www.cise.ufl.edu/ ∼sitharam, http://www.gnu.org, 2004.
  31. 31.
    B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial system. Math. Comp., 64:1541-1555, 1995.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    W. Whiteley. Rigidity and scene analysis. In Handbook of Discrete and Computational Geometry, pages 893 -916. CRC Press, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jörg Peters
  • Meera Sitharam
  • Yong Zhou
  • JianHua Fan

There are no affiliations available

Personalised recommendations