Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
A. Bovik. Handbook of Image and Video Processing. Academic Press, 2000.
R. H. Chan, C.-W. Ho, and M. Nikolova. Convergence of Newton’s method for a minimization problem in impulse noise removal. J. Comput. Math., 22(2):168–177,2004.
R. H. Chan, C.-W. Ho, and M. Nikolova. Salt-and-pepper noise removal by median-type noise detector and edge-preserving regularization. IEEE Trans. Image Process., 14(10):1479–1485, 2005.
R. H. Chan, C. Hu, and M. Nikolova. An iterative procedure for removing random-valued impulse noise. IEEE Signal Proc. Letters, 11(12):921–924, 2004.
P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process., 6(2):298–311, 1997.
T. Chen and H. R. Wu. Adaptive impulse detection using center-weighted median filters. IEEE Signal Proc. Letters, 8(1):1–3, 2001.
Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim., 10(1):177–182, 1999.
R. Fletcher. Practical methods of optimization. A Wiley-Interscience Publication. John Wiley & Sons Ltd., Chichester, second edition, 1987.
R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Comput. J., 7:149–154, 1964.
P. J. Green. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Medical Imaging, 9(1):84–93, 1990.
M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards, 49:409-436 (1953), 1952.
H. Hwang and R. A. Haddad. Adaptive median filters: new algorithms and results. IEEE Trans. Image Process., 4(4):499–502, 1995.
M. Nikolova. A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision, 20(1-2):99–120, 2004. Special issue on mathematics and image analysis.
E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Rev. Française Informat. Recherche Opérationnelle, 3(16):35–43, 1969.
W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York, third edition, 1976. International Series in Pure and Applied Mathematics.
G. W. Stewart and Ji Guang Sun. Matrix perturbation theory. Computer Science and Scientific Computing. Academic Press Inc., Boston, MA, 1990.
J. Sun and J. Zhang. Global convergence of conjugate gradient methods without line search. Ann. Oper. Res., 103:161–173, 2001.
R. S. Varga. Matrix iterative analysis, volume 27 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, expanded edition, 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cai, JF., Chan, R., Morini, B. (2007). Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods. In: Tai, XC., Lie, KA., Chan, T.F., Osher, S. (eds) Image Processing Based on Partial Differential Equations. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33267-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-33267-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33266-4
Online ISBN: 978-3-540-33267-1
eBook Packages: Computer ScienceComputer Science (R0)