Skip to main content

Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods

  • Conference paper
Image Processing Based on Partial Differential Equations

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

    Google Scholar 

  2. A. Bovik. Handbook of Image and Video Processing. Academic Press, 2000.

    Google Scholar 

  3. R. H. Chan, C.-W. Ho, and M. Nikolova. Convergence of Newton’s method for a minimization problem in impulse noise removal. J. Comput. Math., 22(2):168–177,2004.

    MathSciNet  Google Scholar 

  4. R. H. Chan, C.-W. Ho, and M. Nikolova. Salt-and-pepper noise removal by median-type noise detector and edge-preserving regularization. IEEE Trans. Image Process., 14(10):1479–1485, 2005.

    Article  Google Scholar 

  5. R. H. Chan, C. Hu, and M. Nikolova. An iterative procedure for removing random-valued impulse noise. IEEE Signal Proc. Letters, 11(12):921–924, 2004.

    Article  Google Scholar 

  6. P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process., 6(2):298–311, 1997.

    Article  Google Scholar 

  7. T. Chen and H. R. Wu. Adaptive impulse detection using center-weighted median filters. IEEE Signal Proc. Letters, 8(1):1–3, 2001.

    Article  Google Scholar 

  8. Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim., 10(1):177–182, 1999.

    Article  MathSciNet  Google Scholar 

  9. R. Fletcher. Practical methods of optimization. A Wiley-Interscience Publication. John Wiley & Sons Ltd., Chichester, second edition, 1987.

    Google Scholar 

  10. R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Comput. J., 7:149–154, 1964.

    Article  MathSciNet  Google Scholar 

  11. P. J. Green. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Medical Imaging, 9(1):84–93, 1990.

    Article  Google Scholar 

  12. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards, 49:409-436 (1953), 1952.

    MathSciNet  Google Scholar 

  13. H. Hwang and R. A. Haddad. Adaptive median filters: new algorithms and results. IEEE Trans. Image Process., 4(4):499–502, 1995.

    Article  Google Scholar 

  14. M. Nikolova. A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision, 20(1-2):99–120, 2004. Special issue on mathematics and image analysis.

    Article  MathSciNet  Google Scholar 

  15. E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Rev. Française Informat. Recherche Opérationnelle, 3(16):35–43, 1969.

    Google Scholar 

  16. W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York, third edition, 1976. International Series in Pure and Applied Mathematics.

    Google Scholar 

  17. G. W. Stewart and Ji Guang Sun. Matrix perturbation theory. Computer Science and Scientific Computing. Academic Press Inc., Boston, MA, 1990.

    Google Scholar 

  18. J. Sun and J. Zhang. Global convergence of conjugate gradient methods without line search. Ann. Oper. Res., 103:161–173, 2001.

    Article  MathSciNet  Google Scholar 

  19. R. S. Varga. Matrix iterative analysis, volume 27 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, expanded edition, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, JF., Chan, R., Morini, B. (2007). Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods. In: Tai, XC., Lie, KA., Chan, T.F., Osher, S. (eds) Image Processing Based on Partial Differential Equations. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33267-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33267-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33266-4

  • Online ISBN: 978-3-540-33267-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics