Advertisement

Topological Representations of Vector Fields

  • Holger Theisel
  • Christian Rössl
  • Tino Weinkauf
Part of the Mathematics and Visualization book series (MATHVISUAL)

This chapter gives an overview on topological methods for vector field processing. After introducing topological features for 2D and 3D vector fields, we discuss how to extract and use them as visualization tools for complex flow phenomena. We do so both for static and dynamic fields. Finally, we introduce further applications of topological methods for compressing, simplifying, comparing, and constructing vector fields.

Keywords

Hopf Bifurcation Topological Feature Stream Line Topological Representation Stream Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Abraham and K. Shaw. Dynamics, The Geometry of Behaviour. Addison-Wesley, 1992.Google Scholar
  2. 2.
    D. Asimov. Notes on the topology of vector fields and flows. Technical report, NASA Ames Research Center, 1993. RNR-93-003.Google Scholar
  3. 3.
    P. G. Bakker. Bifurcations in Flow Patterns (Theory and Applications of Transport in Porous Media). Kluwer Academic Publishers, 1991.Google Scholar
  4. 4.
    M. S. Chong, A. E. Perry, and B. J. Cantwell. A general classification of threedimensional flow fields. Physics of Fluids A, 2(5):765-777, 1990.CrossRefMathSciNetGoogle Scholar
  5. 5.
    W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization ’99, pages 149-354, 1999.Google Scholar
  6. 6.
    W. de Leeuw and R. van Liere. Visualization of global flow structures using multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45-52, 1999.Google Scholar
  7. 7.
    P.A. Firby and C.F. Gardiner. Surface Topology, chapter 7, pages 115-135. Ellis Horwood Ltd., 1982. Vector Fields on Surfaces.Google Scholar
  8. 8.
    C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector field singularities in unstructured 3D time-dependent datasets. In Proc. IEEE Visualization 2004, pages 329-336,2004.Google Scholar
  9. 9.
    A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of threedimensional vector fields. In Proc. IEEE Visualization ’91, pages 33-40, 1991.Google Scholar
  10. 10.
    J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, 2nd edition, 1986.Google Scholar
  11. 11.
    H. Hauser and E. Gröller. Thorough insights by enhanced visualization of flow topology. In 9th international symposium on flow visualization, 2000.Google Scholar
  12. 12.
    B. Heckel, G.H. Weber, B. Hamann, and K.I.Joy. Construction of vector field hierarchies. In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visualization ’99, pages 19-26, Los Alamitos, 1999.Google Scholar
  13. 13.
    J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27-36, 1989.Google Scholar
  14. 14.
    J. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11:36-46, May 1991.CrossRefGoogle Scholar
  15. 15.
    J. Hultquist. Constructing stream surfaces in steady 3D vector fields. In Proc. IEEE Visualization ’92, pages 171-177, 1992.Google Scholar
  16. 16.
    Y. Lavin, R.K. Batra, and L. Hesselink. Feature comparisons of vector fields using earth mover’s distance. In Proc. IEEE Visualization ’98, pages 103-109, 1998.Google Scholar
  17. 17.
    S. Lodha, N. Faaland, and J. Renteria. Topology preserving top-down compression of 2d vector fields using bintree and triangular quadtrees. IEEE Transactions on Visualization and Computer Graphics, 9(4):433-442, 2003.CrossRefGoogle Scholar
  18. 18.
    S.K. Lodha, J.C. Renteria, and K.M. Roskin. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343-350, 2000.Google Scholar
  19. 19.
    H. Löffelmann, H. Doleisch, and E. Gröller. Visualizing dynamical systems near critical points. In Spring Conference on Computer Graphics and its Applications, pages 175-184, Budmerice, Slovakia, 1998.Google Scholar
  20. 20.
    G. Mutschke, 2003. private communication.Google Scholar
  21. 21.
    G.M. Nielson. Tools for computing tangent curves and topological graphs for visualizing piecewise linearly varying vector fields over triangulated domains. In G.M. Nielson, H. Hagen, and H. Müller, editors, Scientific Visualization, pages 527-562. IEEE Computer Society, 1997.Google Scholar
  22. 22.
    P. A. Philippou and R. N. Strickland. Vector field analysis and synthesis using three dimensional phase portraits. Graphical Models and Image Processing, 59:446-462, November 1997.CrossRefGoogle Scholar
  23. 23.
    K. Polthier and E. Preuss. Identifying vector fields singularities using a discrete hodge decomposition. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, pages 135-150. Springer Verlag, Heidelberg, 2002.Google Scholar
  24. 24.
    F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. Feature extraction and visualisation of flow fields. In Proc. Eurographics 2002, State of the Art Reports, pages 69-100, 2002.Google Scholar
  25. 25.
    G. Scheuermann, T. Bobach, H. Hagen K. Mahrous, B. Hamann, K. Joy, and W. Kollmann. A tetrahedra-based stream surface algorithm. In Proc. IEEE Visualization 01, pages 151 - 158, 2001.Google Scholar
  26. 26.
    G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing non-linear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109-116,1998.Google Scholar
  27. 27.
    H. Schumann and W. Müller. Visualisierung - Grundlagen und allgemeine Methoden. Springer-Verlag, 2000. (in German).Google Scholar
  28. 28.
    D. Stalling and T. Steinke. Visualization of vector fields in quantum chemistry. Technical report, ZIB Preprint SC-96-01, 1996. ftp://ftp.zib.de/pub/zib-publications/reports/SC-96-01.ps.Google Scholar
  29. 29.
    A. Telea and J.J. van Wijk. Simplified representation of vector fields. In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visualization ’99, pages 35-42, Los Alamitos, 1999.Google Scholar
  30. 30.
    H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595-604, 2002.CrossRefGoogle Scholar
  31. 31.
    H. Theisel, Ch. Rössl, and H.-P. Seidel. Combining topological simplification and topology preserving compression for 2d vector fields. In Proc. Pacific Graphics, pages 419 - 423,2003.Google Scholar
  32. 32.
    H. Theisel, Ch. Rössl, and H.-P. Seidel. Compression of 2D vector fields under guaranteed topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333-342, 2003.CrossRefGoogle Scholar
  33. 33.
    H. Theisel, Ch. Rössl, and H.-P. Seidel. Using feature flow fields for topological comparison of vector fields. In Proc. Vision, Modeling and Visualization 2003, pages 521 - 528, Berlin, 2003. Aka.Google Scholar
  34. 34.
    H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visualization 2003. Proc. VisSym 03, pages 141-148, 2003.Google Scholar
  35. 35.
    H. Theisel and T. Weinkauf. Vector field metrics based on distance measures of first order critical points. In Journal of WSCG, volume 10:3, pages 121-128, 2002.Google Scholar
  36. 36.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In Proc. IEEE Visualization 2003, pages 225-232, 2003.Google Scholar
  37. 37.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Grid-independent detection of closed stream lines in 2D vector fields. In Proc. Vision, Modeling and Visualization 2004, 2004.Google Scholar
  38. 38.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Stream line and path line oriented topology for 2D time-dependent vector fields. In Proc. IEEE Visualization 2004, pages 321-328, 2004.Google Scholar
  39. 39.
    X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D vector fields. In Proc. IEEE Visualization 2000, pages 359-366, 2000.Google Scholar
  40. 40.
    X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. Visualization 01, pages 159 - 166, 2001.Google Scholar
  41. 41.
    X. Tricoche, G. Scheuermann, and H. Hagen. Topology-based visualization of timedependent 2D vector fields. In Data Visualization 2001. Proc. VisSym 01, pages 117-126, 2001.Google Scholar
  42. 42.
    T. Weinkauf. Krümmungsvisualisierung für 3D-Vektorfelder. Diplomarbeit, University of Rostock, Computer Science Department, 2000. (in German).Google Scholar
  43. 43.
    T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary switch connectors for topological visualization of complex 3D vector fields. In Proc. VisSym 04, pages 183-192, 2004.Google Scholar
  44. 44.
    T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum (Eurographics 2004),23(3):469-478, 2004.CrossRefGoogle Scholar
  45. 45.
    T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Extracting higher order critical points and topological simplification of 3D vector fields. In Proc. IEEE Visualization 2005, pages 95-102, 2005.Google Scholar
  46. 46.
    T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165-172, 2001.CrossRefGoogle Scholar
  47. 47.
    T. Wischgoll, G. Scheuermann, and H. Hagen. Tracking closed stream lines in timedependent planar flows. In Proc. Vision, Modeling and Visualization 2001, pages 447-454,2001.Google Scholar
  48. 48.
    H.-Q. Zhang, U. Fey, B.R. Noack, M. König, and H. Eckelmann. On the transition of the cylinder wake. Phys. Fluids, 7(4):779-795, 1995.CrossRefGoogle Scholar
  49. 49.
    M. Zöckler, D. Stalling, and H.C. Hege. Interactive visualization of 3D-vector fields using illuminated stream lines. In Proc. IEEE Visualization ’96, pages 107-113, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Holger Theisel
    • 1
  • Christian Rössl
    • 2
  • Tino Weinkauf
    • 3
  1. 1.Bielefeld UniversityGermany
  2. 2.INRIA Sophia-AntipolisFrance
  3. 3.Zuse Institute Berlin (ZIB)Germany

Personalised recommendations